
- •Ю рченко в.А. Основы общей биологии
- •Часть I
- •Глава 1 19
- •Глава 2 42
- •Глава 3 67
- •Глава 4 106
- •Глава 5 142
- •Глава 1
- •1.1 Основные признаки живых систем
- •1.1.1 Структурная и функциональная сложность
- •1.1.2 Обмен вещества и энергии
- •1.1.3 Способность реагировать на воздействие внешних факторов (раздражимость)
- •1.1.4 Рост
- •1.1.5 Размножение
- •1.1.6 Движение
- •1.2 Живая материя
- •1.2.1 Элементарный состав живых организмов
- •1.2.2 Химическая основа жизни
- •1.2.3 Структурная организация живых организмов
- •1.2.4 Динамическое состояние организма
- •1.2.5 Закон действующих масс и динамическое равновесие
- •1.3 Энергия
- •1.3.1 Применимость закона сохранения энергии к живым организмам
- •1.3.2 Энтропия и жизнь
- •1.3.3 Источники энергии живых организмов
- •1.3.4 Получение энергии в живых организмах
- •1.3.5 Живые организмы и машины
- •1.3.6 Способность биохимических реакции производить работу
- •1.3.7 Преобразование энергии в живых организмах; высокоэнергетические промежуточные соединения
- •1.4 Информация
- •Глава 2
- •2.1 Химические связи и взаимодействия между молекулами
- •2.2 Белки
- •2.2.1 Аминокислоты
- •2.2.2 Химическая структура пептидов и белков
- •2.2.3 Первичная структура и конформация белков
- •2.2.4 Физико-химические свойства белков
- •2.2.5 Влияние экологических факторов на белковый обмен
- •2.2.6 Белки – показатели состояния здоровья
- •2.3 Нуклеиновые кислоты
- •2.3.1 Мононуклеотиды
- •2.4 Углеводы
- •2.4.1 Моносахариды
- •2.4.2 Дисахариды
- •2.4.3 Полисахариды
- •2.5 Липиды
- •2.5.1 Жиры (триглицериды)
- •2.5.2 Фосфо- и гликолипиды
- •2.5.3 Стероиды
- •Глава 3
- •3.1 Клетка. Общий обзор
- •3.1.1 Эукариотические клетки
- •3.1.2 Прокариотические клетки
- •3.1.3 Неклеточные формы жизни
- •3.2 Цитоплазма
- •3.3 Рибосомы
- •3.4 Мембраны
- •3.4.1 Молекулярная структура мембран
- •3.5 Клеточное ядро
- •3.5.1 Нуклеоплазма
- •3.5.2 Хромосомы
- •3.5.3 Ядрышко
- •3.5.4 Ядерная оболочка
- •3.5.5 Эквивалент ядра в прокариотических клетках
- •3.6 Плазмиды
- •3.7 Митохондрии и пластиды
- •3.7.1 Митохондрии
- •3.7.2 Пластиды
- •3.7.3 Филогенез митохондрий и пластид
- •3.8 Система эндомембран
- •3.8.1 Эндоплазматический ретикулум (эр)
- •3.8.2 Система Гольджи
- •3.8.3 Пузырьки
- •3.8.4 Вакуоли
- •3.9 Микрофиламенты и внутриклеточные движения
- •3.10 Трубчатые (тубулярные) структуры
- •3.10.1 Микротрубочки (микротубулы)
- •3.10.2 Центриоли и базальные тельца
- •3.10.3 Жгутики и реснички
- •3.10.4 Веретено деления
- •3.11 Параплазматические включения
- •3.11.1 Параплазматические включения эукариотических клеток
- •3.11.2 Гранулы прокариотических клеток
- •3.12 Клеточная стенка
- •3.12.1 Стенка (оболочка) растительных клеток
- •3.12.2 Стенка прокариотических клеток
- •Глава 4
- •4.1 Биокатализ
- •4.2 Обмен веществами между клеткой и окружающей средой
- •4.2.1 Свободный транспорт
- •4.2.2 Транспорт с переносчиком
- •4.3 Диссимиляция как источник энергии
- •4.3.1 Обзор процессов диссимиляции
- •4.3.2 Пути расщепления углеводов
- •4.3.3 Биологическое окисление
- •4.4 Ассимиляция
- •4.4.1 Фотосинтез (общий обзор)
- •4.4.2 Преобразование энергии в фотосинтезе (световой процесс)
- •4.4.3 Превращения веществ при фотосинтезе (темновой процесс)
- •4.6 Регуляция активности ферментов
- •4.6.1 Внутриклеточная ферментная регуляция
- •Глава 5
- •5.1 Действие генов
- •Посттранскрипционные процессы
- •5.1.1 Транскрипция
- •5.1.2 Трансляция
- •5.2 От полипептида к признаку
- •5.3 Регуляция генной активности
- •5.3.1 Регулирование транскрипции
- •5.3.2 Регулирование трансляции
- •5.4 Модификации
- •5.5 Взаимоотношения аллелей
- •5.6 Полигенное наследование и плеиотропия
2.2 Белки
Белки (протеины) представляют собой макромолекулы с молекулярной массой от 10 000 до нескольких миллионов.
Основные функции белков в живых системах:
Структурная, строительная (креатин – белок волос, ногтей, чешуи и т.д.);
Каталитическая – белки ферменты (амилаза, трипсин);
Транспортная (гемоглобин, транспортирующий кислород, транспортные белки, переносящие вещества через клеточную мембрану);
Сократительная (актин и миозин – сократительные белки мышц);
Регуляторная (белок-репрессор, регулирующий активность транскрипции);
Информационная – белки-гормоны (инсулин);
Защитная – белки-антитела иммунной системы;
Энергетическая, запасная (белок молока – казеин, яичный альбумин);
Рецепторная (родопсин);
Белки-токсины (у змей, бактерий);
Белки-антибиотики (у бактерий).
2.2.1 Аминокислоты
Структурными блоками белков служат аминокислоты. Молекула аминокислоты обладает одновременно аминогруппой (– NH2) и карбоксильной группой (– СООН) (рис. 2.2). Помимо значительного числа аминокислот, лишь изредка встречающихся в белках, существует 20 протеиногенных аминокислот, из которых в основном построены все белки.
Протеиногенные аминокислоты являются α-аминокислотами и имеют L-конфигурацию (исключение составляет оптически неактивный глицин).
По строению боковой цепи (R на рис. 2.2) аминокислоты разделяют на 7 групп:
1) алифатические нейтральные (например, глицин);
2) алифатические гидроксиамино-кислоты (например, серин);
3) серосодержащие (например, цистеин);
4) кислые аминокислоты и их амиды (например, аспарагиновая кислота и др.);
5) основные (например, лизин и др.);
6) ароматические и гетероароматические (например, фенилаланин и др.);
7) иминокислоты (пролин).
Боковые цепи могут быть гидрофобными (например, у алифатических нейтральных аминокислот и фенилаланина) или гидрофильными (например, у кислых или основных аминокислот).
Рис. 2.2 – Аминокислоты – общая формула
2.2.2 Химическая структура пептидов и белков
Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Формально такая реакция протекает с выделением воды (рис. 2.3). Образующаяся при этом молекула представляет собой пептид, а связь – СО – NH – называется пептидной связью. Дальнейшее присоединение аминокислот с помощью пептидных связей приводит к построению полипептидной цепи с боковыми цепями аминокислот в виде ответвлений (R на рис. 2.3).
|
||
А |
Б |
В |
|
||
Г |
Рис. 2.3 – Пептиды. Формальная схема синтеза дипептида (В) в результате образования пептидной связи между двумя аминокислотами (А и Б). Г –отрезок пептидной цепи
Полипептидная цепь полярна, она содержит свободную NH2-гpyппу на аминном конце (N-конце) и свободную СООН-группу на противоположном, карбоксильном, конце (С-конце).
Дипептиды содержат два, трипептиды – три, олигопептиды от 2 до 10, полипептиды – более 10 аминокислотных остатков.
Белки представляют собой полипептиды, в молекулу которых входят от 100 до нескольких тысяч аминокислот, с молекулярной массой свыше 10 000 и диаметром молекулы от 5 до 100 нм.
Протеидами называют белковые соединения с дополнительным компонентом. Чаще всего это низкомолекулярное соединение, которое называют простетической группой. Такие группы имеются у металлопротеидов, фосфопротеидов (содержащих фосфат), хромопротеидов с пигментной группой (например, у гемоглобина), липопротеидов с жироподобным компонентом, гликопротеидов с углеводной частью. Комплексы, в которых белки соединены ионными связями с нуклеиновыми кислотами, называются нуклеопротеидами.