
- •1. Место технологии в современном обществе и производстве
- •2. Понятие и цель изучения технологии
- •3. Понятие технологического процесса
- •4. Структура и организация технологических процессов
- •5. Затраты труда в ходе осуществления технологического процесса. Понятие идеальной технологии
- •6. Параметры (показатели) технологического процесса
- •14. Технологическое развитие как ключевое звено совершенствования промышленного производства и развития общества
- •15. Динамика трудозатрат при развитии технологических процессов
- •16. Рационалистическое развитие технологических процессов
- •7. Общие принципы классификации технологических процессов
- •17. Эволюционное и Революционное развитие технологических процессов
- •8. Процессы сортировки, смешивания и дозирования.
- •9. Гидромеханические процессы
- •10. Тепловые процессы
- •11. Массообменные процессы
- •12. Химические процессы в технологии
- •13. Биологические процессы в технологии
- •19. Понятие технических систем, законы строения технических систем
- •20. Законы развития:
- •24. Важнейшие технологические процессы заготовительного производства в машиностроении
- •25. Важнейшие технологические процессы обрабатывающего производства в машиностроении
- •26. Важнейшие технологические процессы сборочного производства в машиностроении
- •30. Общие сведения о текстильных материалах
- •31. Основы производства и характеристика натуральных текстильных волокон
- •32. Основы технологии минеральных удобрений
- •33. Основы технологии переработки топлива
- •34. Общие сведеиия о полимерных материалах
- •35. Важнейшие технологические процессы капитального строительства
- •36. Основы технологии важнейших строительных материалов
- •37. Основы гибкой автоматизированной технологии
- •38. Основы робототехники и роботизации промышленного производства
- •39. Основы роторной технологии обработки изделий
- •40. Основы информационной технологии в управленческой и проектно-конструкторской деятельности
- •41. Основы технологии производства композиционных материалов
- •42. Основы технологии порошковой металлургии
- •43. Электрические методы обработки изделий
- •44. Основы лазерной технологии
- •45. Основы ультразвуковой технологии
- •46. Основы мембранной технологии
- •47. Основы радиационно-химической технологии
- •48. Основы плазменной и элионной технологии
- •49. Основы современной биотехпологии
- •50. Общие сведения о нанотехнологии
- •21. Технологические основы стандартизации и унификации
- •22. Качество продукции и его показатели.
12. Химические процессы в технологии
Химические процессы лежат в основе химической технологии, которая представляет собой науку о наиболее экономичных методах и средствах массовой химической переработки природного и сельскохозяйственного сырья в продукты потребления и продукты, применяемые в других отраслях материального производства.
Химико-технологический процесс (XTII) можно разделить на три взаимосвязанные стадии:
подвод реагирующих веществ в зону реакции;
собственно химические реакции;
отвод полученных продуктов из зоны реакции.
Подвод реагирующих веществ может осуществляться абсорбцией, адсорбцией или десорбцией газов, конденсацией паров, плавлением твердых компонентов или растворением их в жидкости, испарением жидкостей или возгонкой твердых веществ
Химические реакции как второй этап ХТП обычно протекают в несколько последовательных или параллельных стадий, приводящих к получению основного продукта, а также ряда побочных продуктов (отходов), образующихся при взаимодействии примесей с основными исходными веществами. При анализе же производственных процессов часто учитывают не все реакции, а лишь те из них, которые имеют определяющее влияние на качество и количество получаемых целевых продуктов.
Отвод полученных продуктов из зоны реакции может совершаться аналогично подводу, в том числе посредством диффузии, конвекции и перехода вещества из одной фазы (газовой, твердой, жидкой) в другую. При этом общая скорость технологического процесса определяется скоростью одного из трех составляющих элементарных процессов, протекающего медленнее других.
Различают следующие разновидности химико-технологических процессов:
гомогенные и гетерогенные (могут быть экзотермическими и эндотермическими, обратимыми и необратимыми);
электрохимические;
каталитические.
Гомогенными процессами называют такие, в которых все реагирующие вещества находятся в одной какой-нибудь фазе: газовой (г), твердой (т), жидкой (ж). В этих процессах реакция обычно протекает быстрее, чем в гетерогенных. В целом механизм всего технологического процесса в гомогенных системах проще, как и управление процессом. По этой причине на практике часто стремятся к проведению именно гомогенных процессов, т.е. переводят реагирующие компоненты в какую-либо одну фазу.
В гетерогенных процессах участвуют вещества, находящиеся в разных состояниях (фазах), т.е. в двух или трех фазах. Примерами двухфазовых систем могут быть: г — (несмешивающиеся); г — т;ж — т;т — т (разновидные). В производственной практике чаще всего встречаются системы г — ж, г — т, ж — т. Нередко процессы протекают в сложных гетерогенных системах (г — ж — т, г — т — т, ж — т — т).
К гетерогенным процессам относятся горение (окисление) твердых веществ и жидкостей, растворение металлов в кислотах и щелочах и др.
Все химические процессы протекают либо с выделением, либо с поглощением теплоты: первые называются экзотермическими, вторые — эндотермическими. Количество выделяемой или поглощаемой при этом теплоты называют тепловым эффектом процесса (теплоты процесса).
Теоретически все химические реакции, осуществляемые в ХТП, обратимы. В зависимости от условий они могут протекать как в прямом, так и в обратном направлениях. Во многих случаях равновесие в реакциях полностью смещается в сторону продуктов реакции, а обратная реакция, как правило, не протекает. По этой причине технологические процессы делятся на обратимые и необратимые. Последние протекают лишь в одном направлении.
Электрохимические процессы относятся к такой науке, как электрохимия, которая рассматривает и изучает процессы превращения химической энергии в электрическую и наоборот. Поскольку электрический ток — это перемещение электрических зарядов, в частности электронов, то основное внимание электрохимия сосредотачивает на реакциях, в которых электроны переходят от одного вещества к другому. Такие реакции в химии называются окислительно-восстановительными.
Процессы перехода электрической энергии в химическую называются электролизом.
Каталитические процессы, называемые катализом, осуществляются с целью изменения скорости химических реакций.
Различают положительный и отрицательный катализ, в зависимости от того, ускоряет катализатор реакцию или замедляет ее. Как правило, термин «катализ* определяется как ускорение реакции, в то время как вещества, ее замедляющие, называются ингибиторами.
Важными компонентами промышленных катализаторов являются промоторы — вещества, добавление которых к катализатору в малых количествах (обычно долях процента) увеличивает его активность, селективность или устойчивость.
Вещества, действие которых на катализатор приводит к снижению его активности или полному прекращению каталитического действия, называются каталитическими ядами.
В качестве катализаторов в промышленности чаще всего применяют платину, железо, никель, кобальт и их оксиды, оксид ванадия (V), алюмосиликаты, некоторые минеральные кислоты и соли; катализаторы используются как в окислительно-восстановительных, так и кислотно-основных реакциях.
Каталитические процессы, вызванные переносом электронов, относятся к окислительно-восстановительному катализу. Он применяется в производстве аммиака, азотной кислоты, серной кислоты и др.
К кислотно-основному катализу относятся каталитический крекинг, гидратация, дегидрация, многие реакции изомеризации, конденсации органических веществ.
В промышленности встречается и так называемый полифункциональный катализ, в котором имеет место совмещение рассмотренных выше двух важнейших видов катализа.