Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
polny.docx
Скачиваний:
0
Добавлен:
10.01.2020
Размер:
420.15 Кб
Скачать

28) Биномиальный коэффициент

Материал из Википедии — свободной энциклопедии

Перейти к: навигация, поиск

В математике биномиальные коэффициенты — это коэффициенты в разложении бинома Ньютона по степеням x. Коэффициент при обозначается (иногда ) и читается «биномиальный коэффициент из n по k» (или «це из n по k»):

В комбинаторике биномиальный коэффициент интерпретируется как количество сочетаний из n по k, то есть количество всех подмножеств (выборок) размера k в n-элементном множестве.

Биномиальные коэффициенты часто возникают в задачах комбинаторики и теории вероятностей. Обобщением биномиальных коэффициентов являются мультиномиальные коэффициенты.

Явные формулы

Значение биномиального коэффициента определено для всех целых чисел n и k. Явные формулы для вычисления биномиальных коэффициентов:

для

для или

для

где  обозначает факториал числа m.

Треугольник Паскаля

Тождество

позволяет расположить биномиальные коэффициенты для неотрицательных целых чисел n, k в виде треугольника Паскаля, в котором каждое число равно сумме двух вышестоящих:

Треугольная таблица, предложенная Паскалем в «Трактате об арифметическом треугольнике» (1654), отличается от выписанной здесь поворотом на 45°. Таблицы для изображения биномиальных коэффициентов были известны и ранее (Тарталье, О. Хайяму и др.).

Строки в треугольнике Паскаля в пределе стремятся к функции нормального распределения.

Если взять квадратную матрицу, отсчитав N элементов по катетам треугольника и повернув квадрат на любой из четырёх углов, то детерминант этих четырёх матриц по модулю равен 1 при любом N. Если поставить уголом из 1 в верхний левый угол, то детерминант матрицы будет равен 1.

В матрице числа на диагонали i+j = const повторяют числа строк треугольника Паскаля. (i,j = 0...∞)

Матрицу где i, j = 0…p можно разложить в произведение двух строго диагональных матриц. Первая нижнетреугольная, а вторая получается из первой путем транcпонирования. Элементы такой матрицы

где i,j = 0...p Далее обратная матрица к U

таким образом можно разложить обратную матрицу к в произведение двух строго диагональных матриц и дать явное выражение для обратных элементов. Первая верхнетреугольная, а вторая получается из первой путем транспонирования.

i,j,m,n = 0...p, если выражение в кваратных скобках ложно, то элемент суммы равен 0. Элементы обратной матрицы меняются при изменение её размера и в отличие от матрицы недостаточно приписать новую строку и столбец.

Свойства Производящие функции

Для фиксированного значения n производящей функцией последовательности биномиальных коэффициентов является:

Для фиксированного значения k производящей функцией последовательности биномиальных коэффициентов является:

Двумерной производящей функцией биномиальных коэффициентов является:

Делимость

Из теоремы Люка следует, что:

  • нечётен в двоичной записи числа k единицы не стоят в тех разрядах, где в числе n стоят нули.

  • некратен простому p в p-ичной записи числа k все разряды не превосходят соответствующих разрядов числа n.

  • В последовательности биномиальных коэффициентов :

    • все числа не кратны заданному простому p , где натуральное число m < p;

    • все числа, кроме первого и последнего, кратны заданному простому p ;

    • количество нечётных чисел равно степени двойки (степень двойки равна количеству единиц в двоичной записи числа n);

    • не может быть поровну чётных и нечётных чисел;

    • количество не кратных простому p чисел равно , где числа  — разряды p-ичной записи числа n; а число — её длина.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]