
- •13.Пути передачи сигнала клетке (аутокринный, паракринный, эндокринный). Аутокринная регуляция обмена веществ, супероксидный радикал и оксид азота. Механизмы образования и биологическое действие.
- •Гормоны гипофиза
- •23.Инсулин. Глюкагон. Химическая природа, образование, ткани-мишени. Влияние инсулина на углеводный, белковый и липидный обмены. Биологическое действие
- •Биологическое действие
- •Биологическое действие
- •Биологическое действие на половые органы
- •Действие на неполовые органы
|
1 (84).Витамины. Классификация. Понятие гипо-, авитаминоза и гипервитаминоза. Основные источники витаминов для организма человека. Особенности функционирования жирорастворимых и водорастворимых витаминов. Витамины - это низкомолекулярные органические вещества разнообразного строения. Объединены в одну группу по следующим признакам:
1. Витамины абсолютно необходимы организму и в очень небольших количествах.
2. Витамины не синтезируются в организме и должны поступать извне или синтезироваться микрофлорой кишечника.
Витамины играют одинаковую роль во всех формах жизни, но высшие животные утратили способность к их синтезу. Например, аскорбиновая кислота (витамин ”С”) не синтезируется в организмах человека, обезьян и морской свинки, так как в процессе эволюции была утеряна ферментная система синтеза этого витамина из глюкозы. .
КЛАССИФИКАЦИЯ ВИТАМИНОВ
1. Водорастворимые витамины. К этой группе относят витамины С, Р, В1, В2, В3, ВC, В6, В12, РР, Н.
2. Жирорастворимые витамины: А, Д, Е, К.
ОСОБЕННОСТИ ФУНКЦИОНИРОВАНИЯ
Большинство водорастворимых витаминов должно поступать регулярно с пищей, т.к. они быстро выводятся или разрушаются в организме. Жирорастворимые витамины могут депонироваться в организме. Кроме того, они плохо выводятся, поэтому иногда при избытке жирорастворимых витаминов наблюдаются гиповитаминозы.
АВИТАМИНОЗ - это заболевание, которое развивается при полном отсутствии того или иного витамина в организме. В настоящее время авитаминозы обычно не встречаются, а бывают ГИПОВИТАМИНОЗЫ при недостатке витамина в организме
ПРИЧИНЫ РАЗВИТИЯ ГИПО- И АВИТАМИНОЗОВ
Все причины можно разделить на внешние и внутренние.
ВНЕШНИЕ причины гиповитаминозов:
1. Недостаточное содержание витамина в пище (при неправильной обработке пищи, при неправильном хранении пищевых продуктов)
2. Состав рациона питания (например, отсутствие в рационе овощей и фруктов)
3. Не учитывается потребность в том или ином витамине. Например, при белковой диете возрастает потребность в витамине “РР” (при обычном питании он может частично синтезироваться из триптофана). Если человек потребляет много белковой пищи, то может увеличиться потребность в витамине “В6“ и снизиться потребность в витамине РР.
4. Социальные причины: урбанизация населения, питание исключительно высокоочищенной и консервированной пищей; наличие антивитаминов в пище. Социальные причины развития авитаминозов существуют в мире. Например, в отдаленных районах Севера, в рационе людей мало овощей и фруктов. Урбанизация также имеет значение, т.к. в пищу потребляется много консервированных и рафинированнных продуктов. В крупных городах люди недостаточно обеспечены солнечным светом - поэтому может быть гиповитаминоз Д.
ВНУТРЕННИЕ причины гиповитаминозов:
1. Физиологическая повышенная потребность в витаминах, например, в период беременности, при тяжелом физическом труде.
2. Длительные тяжелые инфекционные заболевания, а также период выздоровления;
3. Нарушение всасывания витаминов при некоторых заболеваниях ЖКТ, например, при желчнокаменной болезни нарушается всасывание жирорастворимых витаминов;
4. Дисбактериоз кишечника. Имеет значение, так как некоторые витамины синтезируются полностью микрофлорой кишечника (это витамины В3, Вc, В6, Н, В12 и К);
5. Генетические дефекты некоторых ферментативных систем. Например, витамин Д-резистентный рахит развивается у детей при недостатке ферментов, участвующих в образовании активной формы витамина Д (1,25-диоксихолекальциферола).
2(85)Витамин В1 (тиамин). Активная форма витамина. Участие в биохимических реакциях. Проявление недостаточности. Производное вит.В1 - ТДФ (ТПФ) является коферментом пируватдегидрогеназного комплекса (фермента пируваткарбоксилазы), альфа-кетоглутаратдегидрогеназного комплекса и фермента транскетолазы (фермента альфа-тотаратдекарбоксилазы), а также входит в состав кофермента транскетолаз - ферментов неокислительного этапа ГМФ-пути..
При недостаточности вит.В1 может возникнуть болезнь "бери-бери", характерная для тех стран Востока, где основным продуктом питания служит очищенный рис и кукуруза. Для этого заболевания характерна мышечная слабость, нарушение моторики кишечника, потеря аппетита, истощение, периферический неврит (характерный признак - человеку больно вставать на стопу - больные ходят “на цыпочках”), спутанность сознания, нарушения работы сердечно-сосудистой системы. При "бери-бери" повышается содержание пирувата в крови.
Пищевые источники витамина В1 - ржаной хлеб. В кукурузе, рисе, пшеничном хлебе витамин В1 практически отсутствует. Это объясняется тем, что в зерне ржи тиамин распределен по всему зерну, а в других злаках он содержится только в оболочке зерен.Суточная потребность - 1.5 мг/сутки.
3(86)Витамин В2 (рибофлавин). Активная форма витамина. Участие в биохимических реакциях. Проявление недостаточности. Витамин В2 входит в состав флавинмононуклеотида (ФМН) и флавинадениндинуклеотида (ФАД) - простетических групп флавиновых ферментов.
Его биологическая функция в организме - участие в окислительно-восстановительных реакциях в составе флавопротеидов (ФП).
Недостаточность этого витамина часто встречается в России. Особенно часто бывает у людей, которые не употребляют в пищу черный ржаной хлеб. Проявление гиповитаминоза: ангулярные дерматиты в углах рта (“заеда”), глаз. Часто это сопровождается кератитами (воспаление роговицы). В очень тяжелых случаях бывает анемия. Очень часто сочетаются сочетанные гиповитаминозы витаминов "В2" и "РР",так как эти витамины содержатся в одних и тех же продуктах.
Пищевые источники: ржаной хлеб, молоко, печень, яйца, овощи желтого цвета, дрожжи. Суточная потребность: 2-4 мг/сутки.
4(87)Витамин В3 (пантотеновая кислота). Активные формы витамина. Участие в биохимических реакциях. Молекула пантотеновой кислоты состоит из бета-аланина и 2,4-дигидрокси-диметил-масляной кислоты. Формулу знать необязательно.
Важность этого витамина в том, что он входит в состав HS-KoA (кофермента ацилирования).
Строение КоА: а) тиоэтиламин б) пантотеновая кислота в) 3-фосфоаденозин-5-дифосфат.
HSКоА - кофермент ацилирования, то есть входит в состав ферментов, которые катализируют перенос ацильных остатков. Поэтому В3 участвует в бета-окислении жирных кислот, окислительном декарбоксилировании альфа-кетокислот, биосинтезе нейтрального жира, липоидов, стероидов, гема, ацетилхолина.
При недостатке пантотеновой кислоты при дисбактериозе у человека развиваются дерматиты, в тяжелых случаях - изменения со стороны желез внутренней секреции, в том числе надпочечников. Также наблюдается депигментация волос, истощение.
Пищевые источники: яичный желток, печень, дрожжи, мясо, молоко.
Суточная потребность: 10мг/сут.
5(87)Витамин В5 (никотинамид). Активные формы витамина. Участие в биохимических реакциях. Проявление недостаточности. Фармакологическое действие витамина В5. Входит в состав НАД и НАДФ, то есть входит в состав коферментов никотинамидных дегидрогеназ.
Его роль - участие в окислительно-восстановительных реакциях. При недостатке РР развивается пеллагра. При пеллагре наблюдаются три “Д”:- дерматит- диарея - деменция (поражение центральной нервной системы)
Источники РР: мясо, бобовые, орехи, рыба и вообще продукты, богатые белком.
Витамин РР может частично синтезироваться из триптофана.
Если человек съедает много белковой пищи, то потребность в этом витамине снижается. Из 60 гр. белка может синтезироваться 1 мг витамина РР.
Суточная потребность: 15-25 мг/сутки.
6(88)Витамин В6 (пиридоксин), Витамин В9 (фолиевая кислота) и В12 (цианокобаламин). Активные формы витаминов. Участие в биохимических реакциях. Проявление недостаточности. В6 в форме пиридоксальфосфата является простетической группой трансаминаз и декарбоксилаз аминокислот. Он необходим и для некоторых реакций обмена аминокислот. Поэтому при авитаминозе В6 наблюдаются нарушения обмена аминокислот.В6 также участвует в реакциях синтеза гема гемоглобина (синтез d-аминолевулиновой кислоты). Поэтому при недостатке В6 у человека развивается анемия.
Кроме анемии, наблюдаются дерматиты. Недостаток В6 может развиться у больных туберкулезом, потому что этих больных лечат препаратами, синтезированными на основе изониазида - это антагонисты витамина В6.
Пищевые источники: ржаной хлеб, горох, картофель, мясо, печень, почки.
Суточная потребность взрослого человека: 0.15-0.20 мг.
7(89)Витамин С (аскорбиновая кислота). Участие в биохимических реакциях. Проявление недостаточности. В 1932 г. впервые выделен из сока лимона, через два года искусственно синтезирован. Важное свойство - способность аскорбиновой кислоты легко окисляться.
Биологическая роль витамина “С” (связана с его участием в окислительно-восстановительных реакциях)
1. Витамин С, являясь сильным восстановителем, играет роль кофактора в реакциях окислительного гидроксилирования, что необходимо для окисления аминокислот пролина и лизина в оксипролин и в оксилизин в процессе биосинтеза коллагена. Коллаген может синтезироваться и без участия витамина С, но такой коллаген не является полноценным (не формирутся его нормальная структура). Поэтому при недостатке витамина С ткани, содержащие много коллагена, становятся непрочными, ломкими. В первую очередь нарушается структура стенок сосудов, повышается их проницаемость, наблюдаются кровоизлияния под кожу и под слизистые оболочки.
2. Участвует в синтезе стероидных гормонов надпочечников.
3. Необходим для всасывания железа.
4. Участвует в неспецифической иммунной защите организма.
Авитаминоз “С” - цинга. Проявления цинги: болезненность, рыхлость и кровоточивость десен, расшатывание зубов, нарушение целостности капилляров - подкожные кровоизлияния , отечность и болезненность суставов, нарушение заживления ран, анемия. Иногда цинга развивается у новорожденных на искусственном вскармливании пастеризованным молоком, в которое не добавлен витамин С. В основе всех изменений при цинге, за исключением анемии, лежит нарушение синтеза коллагена. Анемия связана с нарушением всасывания железа.
В настоящее время цинга не распространена, но весной у многих людей наблюдается недостаток (гиповитаминоз) витамина “С”, что проявляется, например, повышенной утомляемостью, понижением иммунитета.
Основные источники витамина “С”: свежие зеленые овощи и фрукты.
Следует помнить, что витамин С легко разрушается при нагревании, особенно в щелочной среде в присутствии кислорода, ионов железа и меди. Хорошо сохраняется в кислой среде (в квашеной капусте, в клюкве, в ягодах черной смородины и плодах шиповника). При длительном хранении овощей и фруктов содержание в них витамина “С” уменьшается.
Источником витамина С является также хвоя ели и сосны.
Суточная потребность - около 100 мг в сутки.
Лечебная доза - до 1-2 г в сутки
8(90)Витамин А (ретинол). Роль в процессах светоощущения, обмена эпителия, эндотелия и соединительной ткани. Проявления недостаточности. Наиболее ранний и специфический признак гиповитаминоза А - гемералопия ("куриная слепота") - нарушение сумеречного зрения. Возникает из-за недостатка зрительного пигмента - родопсина. Родопсин содержит в качестве активной группы ретиналь (альдегид витамина А) - находится в палочках сетчатки. Эти клетки (палочки) воспринимают световые сигналы низкой интенсивности. РОДОПСИН = опсин (белок) + цис-ретиналь.
При возбуждении родопсина светом, цис-ретиналь, в результате ферментативных перестроек внутри молекулы переходит в полностью-транс-ретиналь (на свету). Это приводит к конформационной перестройке всей молекулы родопсина. Родопсин диссоциирует на опсин и транс-ретиналь, что является пусковым механизмом, возбуждающим в окончаниях зрительного нерва импульс, который затем передается в мозг.
В темноте, в результате ферментативных реакций транс-ретиналь вновь превращается в цис-ретиналь и, соединяясь с опсином, образует родопсин.
Витамин А также влияет на процессы роста и развития покровного эпителия. Поэтому при авитаминозе наблюдается поражение кожи, слизистых оболочек и глаз, которое проявляется в патологическом ороговении кожи и слизистых. У больных развивается ксерофтальмия - сухость роговой оболочки глаза, т.к. происходит закупорка слезного канала в результате ороговения эпителия. Так как глаз перестает омываться слезой, которая обладает бактерицидным действием, развиваются конъюнктивиты, изъязвление и размягчение роговицы -кератомаляция. При авитаминозе А может быть также поражение слизистой ЖКТ, дыхательных и мочеполовых путей. Нарушается устойчивость всех тканей к инфекциям. При развитии авитаминоза в детстве - задержка роста.
В настоящее время показано участие витамина А в защите мембран клеток от окислителей - т.е. витамин А обладает антиоксидантной функцией.
Витамин А запасается в печени.
Пищевые источники - печень морских рыб и млекопитающих, желток яиц, цельное молоко, рыбий жир. Овощи и фрукты красно-оранжевого цвета (томаты, морковь и др.) содержат много каротина - водорастворимого предшественника витамина А, имеющего в молекуле 2 иононовых кольца.
В настоящее время, гиповитаминоз А наблюдается у людей с заболеваниями кишечника, поджелудочной железы, при нарушении желчевыделительной функции печени, то есть при заболеваниях, при которых нарушается всасывание жира. Высокие дозы витамина А могут приводить к токсическим эффектам. Характерные проявления гипервитаминоза - воспаление глаз, гиперкератоз, выпадение волос, диспептические явления.
Суточная потребность в витамине А - 1-2.5 мг, в каротине - в 2 раза больше.
9.Витамин Д (холекальциферол). Источники витамина для организма человека. Активные формы витамина, их образование в организме. Участие в обмене кальция и фосфора. Проявления недостаточности (рахит, остеомаляция). Гипервитаминоз Д: возможные причины и проявления. Сам витамин Д не обладает витаминной активностью, но он служит предшественником 1,25-дигидрокси-холекальциферола (1,25-дигидроксивитамина Д3).
Синтез активной формы протекает в два этапа - в печени присоединяется оксигруппа в положении 25, а затем в почках - оксигруппа в положении 1. Из почек активный витамин Д3 переносится в другие органы и ткани - главным образом в тонкий кишечник и в кости, где витамин Д участвует в регуляции обмена Са и Р. Недостаток витамина Д приводит к развитию нарушений фосфорно-кальциевого обмена и процессов окостенения. В результате у детей развивается рахит, связанный с недостатком Са и Р. Характерные признаки рахита - остеомаляция ("размягчение" костей - запаздывание окостенения), запаздывание закрытия родничков, деформации грудной клетки, позвоночника, конечностей. У таких детей снижен мышечный тонус, наблюдается раздражительность, потливость, выпадение волос.
У взрослых при недостатке витамина Д наблюдается остеопороз - разрежение костной ткани в результате вымывания солей кальция из скелета.
Потребность в витамине Д повышается у беременных.
При благоприятных условиях витамин Д может синтезироваться в организме человека из предшественника - 7-дегидрохолестерина под действием ультрафиолетовых лучей (фотохимическая реакция) в результате разрыва связи в кольце В.
Пищевые источники - рыба, рыбий жир, печень, сливочное масло, желток яиц.
Суточная доза витамина Д3 - 10-20 мкг. Высокие дозы витамина Д (выше 1,5 мг в сутки) крайне токсичны. При гипервитаминозе кроме интоксикации наблюдается отложение гидроксиапатита в некоторых внутренних органах (кальцификация почек, кровеносных сосудов).
10.Витамин К (филлохинон). Участие витамина в биохимических реакциях. Витамин К необходим для нормального синтеза протромбина (фактор II) - предшественника одного из белков системы свертывания - тромбина. Тромбин - это фермент, который катализирует реакцию превращения фибриногена в фибрин - основу кровяного сгустка при активации системы светрывания рови.
При недостатке витамина К синтезируется дефектная молекула протромбина и ряда других факторов свертывания крови. Причина - нарушение ферментативного карбоксилирования глутаминовой кислоты, необходимой для связывания Са2+ белками системы свертывания. Основное проявление недостаточности - нарушение свертывания крови, в результате которого происходят самопроизвольные паренхиматозные и капиллярные кровотечения.
Авитаминоз, как правило связан с нарушением выделения желчи в ЖКТ (при желчнокаменной лезни).
Пищевые источники - ягоды рябины, капуста, арахисовое масло и др. растительные масла. Витамин К также синтезируется микрофлорой кишечника, поэтому одна из причин гиповитаминозов при недостатке витамина в пище - дизбактериоз кишечника (например, при антибиотикотерапии).
Если больной страдает гиповитаминозом К, например, при некоторых видах желтух, то операции - даже удаление зуба - могут сопровождаться длительным кровотечением.
Синтезирован водорастворимый аналог витамина К - викасол, который используют при лечении гиповитаминозов, связанных с нарушением всасывания витамина К из кишечника.
Известны природные антивитамины К - например, ДИКУМАРИН, САЛИЦИЛОВАЯ кислота, которые применяют при лечении тромбозов, т.к. антивитамины К способны снижать количество протромбина в крови.
Суточная потребность точно не установлена, т.к. витамин синтезируется микрофлорой. Считают, что в сутки потребность около 1 мг.
11.Витамин Е (токоферол). Участие витамина в реакциях свободнорадикального окисления. Значение витамина для репродуктивной функции. Проявления недостаточности. Является антиоксидантом. При недостаточности витамина Е - дегенеративные изменения в печени, нарушение функций биологических мембран. Витамин Е предохраняет липиды клеточных мембран от окисления активными формами кислорода. Авитаминоз проявляется при очень длительном голодании или при стойком нарушении желчевыделительной функции печени (нарушение всасывания жиров). При этом наблюдаются шелушение кожи, мышечная слабость, стерильность - нарушением функции размножения. Поскольку витамин Е широко распространен в природе (растительные масла, семена пшеницы и др. злаков, сливочное масло), то авитаминоз встречается редко.Суточная потребность - около 10-30 мг.
12.Классификация сигнальных молекул (микромолекулы, эйкозаноиды, цитокины, гистогормоны, гормоны). Понятие о клетках-мишенях. Основные этапы гормональной регуляции. Гормоны — сигнальные вещества, образующиеся а клетках эндокринных желез. После синтеза гормоны поступают в кровь и переносятся к органам-мишеням, где выполняют определенные биохимические и физиологические регуляторные функции .Клетки-мишени – это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.
Основные этапы гормональной регуляции:
Синтез сигнальной молекулы→ Транспорт сигнальной молекулы→ Связывание сигнальной молекулы с рецептором клетки-мишени→ Связывание сигнальной молекулы с рецептором клетки-мишени→ Активация (ингибирование) внутриклеточной молекулы-эффектора→ Изменение метаболизма клетки-мишени/ Инактивация сигнальной молекулы.
13.Пути передачи сигнала клетке (аутокринный, паракринный, эндокринный). Аутокринная регуляция обмена веществ, супероксидный радикал и оксид азота. Механизмы образования и биологическое действие.
Гормоны передают сигнал путем переноса в кровотоке от места синтеза до клеток-мишеней. В этом случае говорят об эндокринном действии ( пример: инсулин). В случае тканевых гормонов (паратгормон) локального действия, когда клетки-мишени расположены в непосредственной близости к секреторным клеткам, говорят о паракринном действии ( пример: гормоны желудочно-кишечного тракта). Когда сигнальные вещества продуцируются и утилизируются в самих клетках, говорят об аутокринном действии ( пример: простагландины).Оксид азота образуется из аминокислоты аргинина при участии сложной Са2+-зависимой ферментной системы, названной NO-синтазой, которая присутствует в нервной ткани, эндотелии сосудов, тромбоцитах и других тканях. В клетках-мишенях NO взаимодействует с входящим в активный центр гуанилатциклазы ионом железа и способствует быстрому образованию цГМФ. Образовавшийся цГМФ вызывает расслабление гладклй мускулатуры сосудов. Однако действие NO кратковременно, несколько секунд. Подобный эффект, но более длительный оказывает нитроглицерин, который медленнее освобождает NO.
14.Производные арахидоновой кислоты – простагландины (простациклин, тромбоксан) и лейкотриены. Биологическая роль. Роль фосфолипазы А2 и циклооксигеназы в продукции производных арахидоновой кислоты. Ингибиторы циклооксигеназы. Эйкозаноиды – биологически активные вещества, синтезируемые большинством клеток из полиеновых жирных кислот, содержащих 20 углеродных атомов («эйкоза» – по гречески означает 20).
Эйкозаноиды, включающие в себя простагландины, тромбоксаны, простациклины, лейкотриены – высокоактивные регуляторы клеточных функций.
Эйкозаноиды – гормоны местного действия по ряду признаков:
образуются во всех клетках и тканях человека за исключением эритроцитов;
оказывают биологический эффект по месту своего образования;
концентрация в крови меньше, чем необходимо, чтобы вызвать ответ в других (удаленных) клетках-мишенях.
Эйкозаноиды участвуют во многих процессах регулируют тонус гладкой мускулатуры (а следовательно – артериальное давление), состояние бронхов, кишечника, матки, секреторную функцию желудка, гемодинамику почек, жировой, водно-солевой обмены, влияют на образование тромбов. Разные типы эйкозаноидов участвуют в развитии воспалительного процесса, происходящего после повреждения тканей или инфекции. Главный субстрат для синтеза эйкозаноидов – арахидоновая кислота. Под действием фосфолипазы А2 или С арахидоновая кислота освобождается из биомембран и может превращаться по двум путям – циклооксигеназному и липоксигеназному. Простациклины – PGI2, PGI3.Простациклин PGI2 синтезируется в эндотелии сосудов, сердечной мышце, ткани матки и слизистой желудка. Он расширяет сосуды, снижая артериальное давление, вызывает дезагрегацию тромбоцитов (препятствует образованию тромбов).Тромбоксаны – А2, А3; В2 – продукт катаболизма А2 (активностью не обладает). Синтезируются в тромбоцитах, ткани мозга, легких, почек. Вызывают агрегацию тромбоцитов (способствуют образованию тромбов), оказывают мощное сосудосуживающее действие.Лейкотриены – А, В, С, D. Участвуют в воспалительных процессах, аллергических и иммунных реакциях, способствуют сокращению гладкой мускулатуры дыхательных путей, пищеварительного тракта, оказывают сосудосуживающее действие. Арахидоновая кислота высвобождается из фосфолипидов под действием фосфолипазы А2. Циклооксигеназа 1 - конститутивный фермент, синтезирующийся с постоянной скоростью. Синтез циклооксигеназы 2 увеличивается при воспалении и индуцируется соответствующими медиаторами - цитокинами. Оба типа циклооксигеназ катализируют включение 4 атомов кислорода в арахидоновую кислоту и формирование пятичленного кольца. Аспирин - препарат, подавляющий основные признаки воспаления. Механизм противовоспалительного действия аспирина стал понятен, когда обнаружили, что он ингибирует циклооксигеназу. Следовательно, он уменьшает синтез медиаторов воспаления и, таким образом, уменьшает воспалительную реакцию. Циклооксигеназа необратимо ингибируется путём ацетилирования серина в положении 530 в активном центре (рис. 8-54). Однако эффект действия аспирина не очень продолжителен, так как экспрессия гена этого фермента не нарушается и продуцируются новые молекулы фермента. Другие нестероидные противовоспалительные препараты (например, ибупрофен и ацетаминофен) действуют по конкурентному механизму, связываясь в активном центре фермента, и также снижают синтез простагландинов.
15.Понятие о цитокинах. Биороль интерлейкинов и факторов роста (васкулярный эндотелиальный фактор роста (VEGF). Цитокины — группа гормоноподобных белков и пептидов — синтезируются и секретируются клетками иммунной системы и другими типами клеток. Разнообразные биологические функции цитокинов подразделяются на три группы: они управляют развитием и гомеостазом иммунной системы, осуществляют контроль за ростом и дифференцировкой клеток крови (системой гемопоэза) и принимают участие в неспецифических защитных реакциях организма, оказывая влияние на воспалительные процессы, свертывание крови, кровяное давление. Вообще цитокины принимают участие в регуляции роста, дифференцировки и продолжительности жизни клеток, а также в управлении апоптозом . Интерлейкины это большая группа цитокинов (от ИЛ-1 до Ил-18), синтезируемых в основном T-клетками, но в некоторых случаях также мононуклеарными фагоцитами или другими тканевыми клетками .Интерлейкины обладают разнообразными функциями, но большинство их стимулирует другие клетки для деления или дифференцировки, при этом каждый из них действует на отдельную, ограниченную группу клеток, экспрессирующих специфичные для данного интерлейкина рецепторы. Это растворимые пептиды,сильные иммунорегуляторы локального действия ; активируют Т- клетки . Фактор роста васкулярного эндотелия (VEGF) - фактор роста, который выполняет свои функции через тирозин-киназовые рецепторы, расположенные в мембране эндотелиальных клеток. VEGF является одним из самых важных стимуляторов ангиогенеза в разнообразных по характеристикам тканях. Экспрессия VEGF регулируется гипоксией. Гипоксическая индукция ведет к повышению регуляции VEGF и впоследствии к увеличению числа кровеносных сосудов. Секреция опухолью VEGF приводит к стимуляции роста эндотелиальных клеток и увеличению проницаемости капилляров. и, наконец, - к образованию новых кровеносных сосудов. 16.Белки межклеточных контактов и адгезии. Хемокины. Молекулы межклеточной адгезии - это связанные с плазматической мембраной белки, которые обеспечивают механическое взаимодействие клеток друг с другом. Часто это молекулы, которые пронизывают мембрану и присоединены к цитоскелету. С их помощью клетки при движении могут «подтягиваться» к другим клеткам или перемещаться по внеклеточному матриксу. Во многих случаях отдельная молекула межклеточной адгезии способна взаимодействовать не с одним, а с несколькими лигандами, для чего служат разные участки связывания. Хотя связывание индивидуальных молекул адгезии со своими лигандами обычно происходит с низким сродством, авидность взаимодействия может быть довольно высокой, за счет того, что молекулы адгезии расположены на поверхности клеток кластерами, и образуют участки многоточечного связывания. Адгезия клеток одного типа к клеткам другого типа может изменяться в результате увеличения числа молекул адгезии на клеточной поверхности либо при изменении их аффинности и/или авидности. К хемокинам относятся белки, способные регулировать направленное движение лейкоцитов в крови и тканях. Продуцентами хемокинов являются лейкоциты, тромбоциты, фибробласты, эпителиальные и эндотелиальные клетки и многие другие. Их действие реализуется через специализированные рецепторы, которые экспрессируются на клетках. Различают 4 типа хемокинов: 1. α-хемокины. К этой группе относятся молекулы, имеющие два цистеиновых остатка, разделенных любым аминокислотным остатком (-с- х-с). Представителями этого семейства являются ИЛ-8, GROα,β,γ, IP-10. Эти хемокины участвуют в регуляции острого воспаления, являются сильными хемоаттрактантами для нейтрофилов. 2. β-хемокины. Эта группа содержит молекулы, имеющие два цистеиновых остатка рядом (-с-с-). К этой группе хемокинов относятся RANTES, MIP-1, MCP-1, -2, -3, -4 и другие. Молекулы этого семейства участвуют в хроническом воспалении. 3. γ-хемокины. Молекулы этой группы имеют в своем составе один цистеиновый остаток. Представителем этой группы является лимфотактин. Хемокин является специфичным фактором для Т-лимфоцитов и НК-клеток, он не оказывает влияния на макрофаги и нейтрофилы. 4. схххс-хемокины. Эта группа содержит молекулы, в которых два цистеиновых остатка разделены тремя аминокислотными остатками. К этой группе хемокинов относится фракталкин, который проявляет специфичность в отношении Т-клеток и НК-клеток. Этот хемокин регулирует миграцию клеток и их адгезию. 17.Гистогормоны (гистамин, серотонин, гастрин, секретин, холецистокинин, натрийуретический пептид). Клетки-продуценты, пути передачи сигналов, биологическая роль. К местным факторам (гистогормонам,тканевым факторам) относятся такие соединения, которые обеспечивают, как правило, саморегуляцию тканевых процессов в месте их образования. Гистамин образуется путем декарбоксилирования гистидина в тучных клетках соединительной ткани . Гистамин образует комплекс с белками и сохраняется в секреторных гранулах тучных клеток. Секретируется в кровь при повреждении ткани (удар, ожог, воздействие эндо- и экзогенных веществ), развитии иммунных и аллергических реакций. Гистамин выполняет в организме человека следующие функции: стимулирует секрецию желудочного сока, слюны (т.е. играет роль пищеварительного гормона); повышает проницаемость капилляров, вызывает отёки, снижает АД (но увеличивает внутричерепное давление, вызывает головную боль); сокращает гладкую мускулатуру лёгких, вызывает удушье; участвует в формировании воспалительной реакции - вызывает расширение сосудов, покраснение кожи, отёчность ткани; вызывает аллергическую реакцию; выполняет роль нейромедиатора; является медиатором боли. Серотонин - нейромедиатор проводящих путей. Образуется в надпочечниках и ЦНС из аминокислоты 5-гидрокситриптофана в результате действия декарбоксилазы ароматических аминокислот. Этот фермент обладает широкой специфичностью и способен также декарбоксилировать триптофан и ДОФА, образующийся из тирозина. 5-Гидрокситриптофан синтезируется из триптофана под действием фенилаланингидроксилазы с коферментом Н4БП (этот фермент обладает специфичностью к ароматическим аминокислотам и гидроксидирует также фенилаланин Серотонин - биологически активное вещество широкого спектра действия. Он стимулирует сокращение гладкой мускулатуры, оказывает сосудосуживающий эффект, регулирует АД, температуру тела, дыхание, обладает антидепрессантным действием. По некоторым данным он может принимать участие в аллергических реакциях, поскольку в небольших количествах синтезируется в тучных клетках. Гастрин продуцируется в G-клетках слизистой желудка и 12-перстной кишки, а также островковых клетках поджелудочной железы.В норме основное количество гастрина образуется в желудке. Главная функция гастрина - стимуляция выделения соляной кислоты париетальными клетками дна желудка. Помимо этого, гастрин стимулирует выделение пепсиногена, внутреннего фактора, секретина, а также бикарбонатов и ферментов поджелудочной железой, желчи в печени, активирует моторику желудочно-кишечного тракта. Основными физиологическими стимулами образования гастрина служат приём белковой пищи и снижение кислотности желудочного сока. Выделение гастрина повышается также под действием нервных стимулов, адреналина, увеличения уровня кальция. Снижение секреции гастрина вызывает повышение кислотности желудочного сока, а также секретин, соматостатин, вазоактивный кишечный полипептид (VIP), гастроингибирующий полипептид (GIP), глюкагон и кальцитонин.Секретин - гормон, который вырабатывают клетки тонкой кишки, а также D-клетки поджелудочной железы. Он состоит из 27 аминокислот. Его функция заключается в том, чтобы вызывать в поджелудочной железе выделение двууглекислой соли (бикарбоната). Эта секреция стимулируется наличием кислоты в желудке после приема пищи. Поджелудочная железа выделяет ферменты, позволяющие переваривать пищу, поступающую из желудка и направляющуюся в тонкую кишку. Эти ферменты не могут должным образом совершать свою работу по пищеварению, если кислотная среда желудка не будет нейтрализована бикарбонатом поджелудочной железы. Таким образом, когда выработка секретина недостаточна, бикарбонат не образуется и пище не переваривается должным образом.Холецистокинин (устаревшее название панкреозимин) — нейропептидный гормон В желудочно-кишечном тракте холецистокинин продуцируется I-клетками слизистой оболочки двенадцатиперстной кишки и проксимальным отделом тощей кишки. Стимуляторами секреции холецистокинина являются поступающие в кишечник из желудка белки, жиры, особенно жирные кислоты с длинной цепью, имеющиеся в жареных продуктах, составные компоненты желчегонных трав (алкалоиды, протопин, сангвинарин, эфирные масла и др.), кислоты. Также стимулятором холецистокинина является гастрин-рилизинг-пептид. Холецистокинин стимулирует сокращение гладкомышечной оболочки желчного пузыря и вызывает его опорожнение в двенадцатиперстную кишку, а также стимулирует расслабление сфинктера Одди и увеличивает ток печёночной желчи. Холецистокинин увеличивает секрецию поджелудочной железы, снижает давление в билиарной системе и вызывает сокращение привратника желудка, чем тормозит перемещение химуса в двенадцатиперстную кишку. Холецистокинин является блокатором секреции соляной кислоты обкладочными клетками слизистой оболочки желудка.Предсердный натрийуретический пептид (ANP), мозговой натрийуретический пептид (BNP) и C-натрийуретический пептид (CNP) - это гормоны , секретируемых предсердием, желудочком и эндотелиальными клетками сосудов соответственно. Натрийуретические пептиды ингибируют ренин-ангиотензин-альдостероновую систему и способствуют усиленной экскреции натрия и периферической вазодилатации. 18.Механизм действия сигнальных молекул с участием мембранных рецепторов, сопряженных с G-белками и аденилатциклазой. Гормоны, взаимодействие которых с рецептором клетки-мишени приводит к образованию цАМФ действуют через систему, включающую: белок-рецептор, G-белок и фермент аденилатциклазу.Последовательность событий, приводящих к изменению активности аденилатциклазы:связывание гормона с рецептором;комплекс гормон-рецептор взаимодействует с G-белком, изменяя его конформацию;вследствие изменения конформации G-белка происходит замена ГДФ на ГТФ;
комплекс GS-белок • ГТФ активирует аденилатциклазу (комплекс GI-белок • ГТФ ингибирует аденилатциклазу);
активация аденилатциклазы приводит к увеличению скорости образования цАМФ из АТФ.
Далее образовавшийся под действием аденилатциклазы цАМФ активирует протеинкиназу А. Активированная протеинкиназа А фосфорилирует ферменты и другие белки, что сопровождается изменением функциональной активности белков-ферментов (активацией или ингибированием).
Протеинкиназа – это внутриклеточный фермент, который может существовать в двух формах. В отсутствие цАМФ протеинкиназа представлена тетрамером, состоящим из двух каталитических (2С) и двух регуляторных (2R) субъединиц (неактивный фермент). В присутствии цАМФ протеинкиназный комплекс обратимо диссоциирует на одну 2R-субъединицу и две свободные каталитические субъединицы С. Субъединицы С обладают ферментативной активностью.
19.Механизм действия сигнальных молекул с участием мембранных рецепторов, сопряженных с G-белками и фосфолипазой С. Функционирование инозитолтрифосфатной системы передачи гормонального сигнала обеспечивают: рецептор, фосфолипаза С, белки и ферменты мембран и цитозоля:
связывание гормона с рецептором приводит к активации фосфолипазы С;
фосфолипаза С катализирует расщепление мембранного фосфатидилинозитол-4,5-бифосфата на два вторичных посредника – диацилглицерол и инозитолтрифосфат (ИФ3);
ИФ3 усиливает поступление Са2+ в цитозоль и обеспечивает его регуляторные эффекты диацилглицерол активирует протеинкиназу С;
конечный эффект обоих посредников – фосфорилирование внутриклеточных белков и ферментов и изменение их активности.
20.Механизм действия сигнальных молекул с участием внутриклеточных рецепторов и ДНК. Передача сигнала гормонов с липофильными свойствами (стероидные гормоны) и тироксина возможна при прохождении их через плазматическую мембрану клеток-мишеней. Рецепторы гормонов находятся в цитозоле или ядре. Ядерные и цитозольные рецепторы содержат ДНК – связывающий домен.
Последовательность событий, приводящих к активации транскрипции:
проникновение гормона через билипидный слой мембраны в клетку;
образуется комплекс гормон-рецептор, который перемещается в ядро клетки и взаимодействует с регуляторным участком: ДНК-энхансером или сайленсером;
при взаимодействии с энхансером увеличивается (при взаимодействии с сайленсером уменьшается) доступность промотора для РНК-полимеразы;
соответственно увеличивается (уменьшается) скорость транскрипции структурных генов и скорость трансляции;
изменяется количество белков (в том числе ферментов), которые влияют на метаболизм и функциональное состояние клетки.
Эффекты гормонов, которые передают сигнал посредством внутриклеточных рецепторов, реализуются через определенный промежуток времени, так как на протекание матричных процессов (транскрипция и трансляция) требуется несколько часов.
21.Рецепторы с тирозинкиназной активностью. Рецепторы, сопряженные с ионными каналами. Рецептор к инсулину обладает тирозинкиназной активностью. Он состоит из двух α-субъединиц и двух β-субъединиц, которые связаны между собой дисульфидными связями и нековалентными взаимодействиями.
На поверхности мембраны находятся α-субъединицы с доменом для связывания с инсулином, β-субъединицы пронизывают бислой мембраны и не взаимодействуют непосредственно с инсулином.
Каталитический центр тирозинкиназной активности находится на внутриклеточном домене находится β-субъединиц.
Взаимодействие инсулина с α-субъединицами рецептора приводит к фосфорилированию β-субъединиц рецептора, в таком состоянии они способны фосфорилировать другие внутриклеточные белки, изменяя тем самым их функциональную активность.
Рецепторы, сопряженные с ионными каналами, являются интегральными мембранными белками, состоящими из нескольких субъединиц. Они действуют одновременно как ионные каналы и как рецепторы, которые способны специфически связывать с внешней стороны эффектор, изменяющий их ионную проводимость. Эффекторами такого типа могут быть гормоны (например, инсулин) и нейромедиаторы (ацетилхолин и др.).
22.Способы регуляции синтеза гормонов периферическими эндокринными железами. Роль либеринов, статинов, тропных гормонов гипофиза. ЦНС оказывает регулирующее действие на эндокринную систему через гипоталамус. В клетках нейронов гипоталамуса синтезируются пептидные гормоны двух типов. Одни через систему гипоталамо-гипофизарных сосудов поступают в переднюю долю гипофиза, где стимулируют (либерины) или ингибируют (статины) синтез тропных гормонов гипофиза. Другие (окситоцин, вазопрессин) поступают через аксоны нервных клеток в заднюю долю гипофиза, где они хранятся и секретируются в кровь в ответ на соответствующие сигналы. В настоящее время известно 7 либеринов и 3 статина.
По химическому строению гормоны гипоталамуса являются низкомолекулярными пептидами. Они освобождают тропные гормоны гипофиза через аденилатциклазный механизм и быстро инактивируются в крови (время полужизни 2-4 мин). Синтез и секреция гормонов гипоталамуса подавляется гормонами эндокринных периферических желёз по принципу отрицательной обратной связи.