
- •Таким образом, карбюратор должен выполнять следующие требования:
- •2. Элементарный карбюратор
- •Разборка автомобиля, мойка и очистка деталей.
- •Б) Пример расчета оптимальной периодичности то автомобилей
- •1 Исходными данными являются данные, полученные при решении задачи в ходе практического занятия 2:
- •5 Результаты расчета f(l) и ci-1 представить в виде табл. 1 и рис. 2
- •5. Уровень звукового давления, дБ; 6.Уровень интенсивности звука, дБ.
Задание №1. Вопрос по автомобильным двигателям: Требования, предъявляемые к карбюратору Элементарный карбюратор.
Задание №2. Вопрос по автомобилям: Гидромеханическая коробка передач.
Задание №3. Вопрос по технологии производства и ремонта автомобилей: Очистка и разборка автомобилей.
Задание №4. Вопрос по технической эксплуатации автомобилей: Экономико-вероятностный метод определения периодичности ТО.
Задание №5. Вопрос по охране труда: Производственный шум, физические характеристики, классификация, нормирование и действие на организм человека.
Ответ № 1
Карбюрацией называется процесс приготовления смеси из топлива и воздуха. Различают горючую смесь и рабочую смесь. Горючая смесь — это смесь влажных паров топлива с воздухом. Рабочая смесь образуется в результате смешивания горючей смеси с отработавшими газами, оставшимися от предыдущего цикла в цилиндре. В зависимости от соотношения топлива и воздуха горючие смеси могут быть различных составов. Для различных режимов работы двигателя необходимы смеси определенного состава.
Так как полностью сгорает только испарившееся топливо, то при приготовлении горючей смеси необходимо стремиться получить полное испарение топлива.
Таким образом, карбюратор должен выполнять следующие требования:
• обеспечивать необходимые условия для испарения топлива и перемешивания его с воздухом;
• автоматически поддерживать оптимальные составы горючей смеси для каждого из режимов работы двигателя и быстро переходить на любой из них;
• иметь минимальные гидравлические сопротивления;
• быть простым по устройству и доступным для регулировок.
Процесс смесеобразования начинается в карбюраторе, где скорость воздуха достигает 150—200 м/с, а истечение топлива — 5—6 м/с. Вследствие разности скоростей топлива и воздуха топливо активно распыляется в слоях воздуха и частично испаряется. Дальнейшее испарение топлива продолжается при движении по впускному трубопроводу, стенки которого нагреты, прохождении клапанной щели и заканчивается в цилиндре. Тем не менее, часть испарившегося топлива оседает на стенках впускного трубопровода (тем больше, чем он холоднее) и в виде пленки продолжает движение по нему. Какая-то часть топлива успеет вновь испариться со стенок, какая-то часть поступает в цилиндр в неиспарившемся виде, что увеличивает расход топлива и понижает развиваемую мощность двигателя.
В основе работы всех современных автомобильных карбюраторов лежит процесс так называемого элементарного карбюратора.
2. Элементарный карбюратор
Принципиальная схема элементарного карбюратора показана на рис. 1.
Рис. 1. Принципиальная схема простейшего карбюратора: 1 — запорный клапан; 2 — поплавок; 3 — балансировочный канал; 4 — распылитель; 5 — диффузор; 6 — дроссельная заслонка; 7 — жиклер; 8 — поплавковая камера
Основными элементами карбюратора являются поплавковая камера 8 с поплавком 2 и запорным клапаном 1, топливный жиклер 7, дроссельная заслонка 6, распылитель 4 и диффузор 5. Свободный от топлива объем поплавковой камеры сообщается, как показано на рисунке, с началом воздушного канала. В этом случае поплавковую камеру называют сбалансированной. С помощью поплавка 2 и игольчатого клапана 1 в поплавковой камере 8 поддерживается примерно постоянный уровень топлива. Для предотвращения вытекания топлива через распылитель устье распылителя располагают выше уровня топлива в поплавковой камере на 2—8 мм (∆h).
Топливный жиклер 7 дозирует топливо, поступающее через распылитель 4 в воздушный канал карбюратора. Дроссельной заслонкой регулируется количество горючей смеси, подаваемой из карбюратора во впускной тракт и цилиндры двигателя.
На тракте впуска между окружающей средой и цилиндром создается перепад давлений, в результате которого воздух из окружающей среды поступает в воздушный канал карбюратора и движется по этому каналу. В диффузоре 5 сечение воздушного потока уменьшается, в результате чего повышается его скорость и создается местное разряжение. Максимального значения разряжение достигает в наиболее узкой части диффузора, где обычно устанавливается сопло распылителя 4. Под действием разряжения в диффузоре топливо из распылителя фонтанирует в воздушный канал. При выходе из сопла распылителя топливо подхватывается воздушным потоком и перемещаясь по воздушному каналу со значительно меньшей скоростью, чем воздух, мелко распыляется. Затем в смесительной камере, которая находится в зоне дроссельной заслонки, распыленное топливо частично испаряется, образуя горючую смесь.
В зависимости от направления потока горючей смеси различают карбюраторы с восходящим, падающим и горизонтальным потоками. Наибольшее распространение получили карбюраторы с падающим потоком, так как они обеспечивают более равномерное распределение горючей смеси по цилиндрам, что улучшает мощностные и экономические показатели двигателя.
В зависимости от количества смесительных камер различают однокамерные и двухкамерные карбюраторы. Применение двух и более камер также позволяет улучшить смесеобразование, т. е. обеспечить более качественное перемешивание топлива с воздухом и равномерное распределение смеси по цилиндрам в многоцилиндровом двигателе.
Ответ№2
Гидромеханическая коробка передач состоит из:
гидротрансформатора
механической коробки передач
На легковых автомобилях наибольшее распространение получили гидромеханические коробки с планетарными механическими коробками. Их преимущества: компактность конструкции, меньшая металлоемкость и шумность, больший срок службы. К недостаткам относятся сложность, высокая стоимость, пониженный КПД. Переключение передач в этих коробках производится при помощи фрикционных муфт и ленточных тормозных механизмов. При этом при включении одной передачи часть фрикционных муфт и ленточных тормозных механизмов пробуксовывает, что также снижает их КПД.
Гидротрансформатор представляет собой гидравлический механизм, который размещен между двигателем и механической коробкой передач. Он состоит из трех колес с лопатками:
насосного (ведущего)
турбинного (ведомого)
реактора
Насосное колесо закреплено на маховике двигателя и образует корпус гидротрансформатора, внутри которого размещены турбинное колесо , соединенное с первичным валом коробки передач и реактор , установленный на роликовой муфте свободного хода. Внутренняя полость гидротрансформатора на 3/4 своего объема заполнена специальным маслом малой вязкости.
Гидротрансформатор: состоит из 1 – маховик; 2 – турбинное колесо; 3 – насосное колесо; 4 – реактор; 5 – вал; 6 – муфта
При работающем двигателе насосное, колесо вращается вместе с маховиком двигателя. Масло под действием центробежной силы поступает к наружной части насосного колеса, воздействует на лопатки турбинного колеса и приводит его во вращение. Из турбинного колеса масло поступает в реактор, который обеспечивает плавный и безударный вход жидкости в насосное колесо и существенное увеличение крутящего момента. Таким образом, масло циркулирует по замкнутому кругу и обеспечивается передача крутящего момента в гидротрансформаторе.
Характерной особенностью гидротрансформатора является увеличение крутящего момента при его передаче от двигателя к первичному валу коробки передач
Гидротрансформатор автоматически устанавливает необходимое передаточное число между коленчатым валом двигателя и к ведущими колесами автомобиля.
Изменение режимов работы гидротрансформатора происходит автоматически. Если увеличивать нагрузку на выходе из гидротрансформатора, то происходит уменьшение угловой скорости турбины, что приводит к увеличению коэффициента трансформации.
К сожалению, гидротрансформатор имеет малый диапазон передаточных чисел, не обеспечивает движения задним ходом, не разобщает двигатель от трансмиссии (необходима сложная система опорожнения проточных частей от рабочей жидкости). Поэтому за гидротрансформатором устанавливают специальную планетарную коробку передач, которая компенсирует указанные недостатки.
Планетарная коробка передач включает в себя планетарные механизмы. В простейшем планетарном механизме солнечная шестерня 6, закрепленная на ведущем валу 1, находится в зацеплении с шестернями-сателлитами 3, свободно установленными на своих осях. Оси сателлитов закреплены на водиле 4, жестко соединенном с ведомым валом 5, а сами сателлиты находятся и зацеплении с коронной шестерней 2, имеющей внутренние зубья.
Планетарный механизм: 1 – ведущий вал; 2 – коронная шестерня; 3 – сателлиты; 4 – водило; 5 – ведомый вал; 6 – солнечная шестерня; 7 – тормоз
Передача крутящего момента с ведущего вала 1 на ведомый вал 5 возможна только при заторможенной коронной шестерне 2 при помощи ленточного тормоза 7 или многодискового «мокрого» сцепления. В этом случае при вращении шестерни 6 сателлиты 3, перекатываясь по зубьям неподвижной шестерни 2, начнут вращаться вокруг своих осей и одновременно через водило 4 будут вращать ведомый вал 5. При растормаживании шестерни 2 сателлиты 3, свободно перекатываясь по шестерне 6, будут вращать шестерню 2, а вал 5 будет оставаться неподвижным..
Ответ №3