
- •Информация, ее представление и измерение
- •Кодирование и шифрование информации
- •Системы счисления и действия в них
- •Высказывания и предикаты
- •Логические вентили, схемы, структуры
- •Базовые алгоритмические структуры
- •Данные, их типы, структуры и обработка
- •Методы разработки и анализа алгоритмов
- •Исполнители алгоритмов - человек и автомат
- •Программное и техническое обеспечение
- •Формальные языки и грамматики
- •Введение в моделирование объектов, процессов и явлений
- •Введение в информационные технологии
- •Информатизация общества, информационное общество. Интернет
Исполнители алгоритмов - человек и автомат
Исполнителем называется некоторая биологическая, техническая или смешанная структура, способная исполнять (покомандно или программно) некоторый класс алгоритмов в некоторой операционной среде (некотором множестве допустимых "инструментов" и "команд").
Наиболее используемые типы исполнителя алгоритмов – человек или автомат (компьютер).
Человек как исполнитель алгоритмов – совокупность исполняющих подсистем (мышечная, двигательная, зрительная, обонятельная и др.) и управляющей подсистемы (нервная, нейронная).
Нервная система передает информацию, получаемую от нервных окончаний кожи, глаз, ушей и других органов, к нервным центрам для ее последующей интеграции, обработки и выработке адекватной реакции. Нервная система – совокупность взаимодействующих нервных клеток или нейронов. У человека их – громадное количество.
Пример. По различным оценкам физиологов, в коре переднего мозга человека – около 50 млрд нейронов. Нейроны, хотя и работают медленно (около сотни инструкций в секунду), но могут за счет более эффективного взаимодействия друг с другом и организации сложнейших нейроструктурных связей (кластеров) решать сложные мыслительные задачи, принимать решения.
Пример. Такая плохо структурируемая, но "простая" для человека задача, как "одеться по погоде", решается быстро с помощью обработки зрительной, слуховой информации и согласованной "нейронной" оценки ситуации, хотя она и плохо формализуемая. Компьютеру эту задачу решать будет намного сложнее. С другой стороны, вычислительные ресурсы человека ограничены по сравнению с возможностями компьютера, который во много раз лучше (быстрее, точнее) решает хорошо формализуемые и хорошо структурируемые задачи.
Нейроны служат для передачи информации за счет нервных импульсов, которая расшифровывается в соответствующих областях коры головного мозга.
В непосредственную (сенсорную) память человека поступает информация от различных сенсоров: зрительных, слуховых, обонятельных и т.д. Затем эта информация переводится в оперативную память (память сознания). Далее она пересылается в долговременную память с привлечением подсознания ("укладывается на полочки" с соответствующими названиями "Формы поведения", "Объекты и образы", "Правила и процедуры обнаружения и идентификации объектов", "Правила выборки и организации информации", "Жизненный опыт", "Бытовые навыки и умения", "Профессиональные навыки и умения" и др.).
Пример. Увиденный человеком конкретный компьютер ассоциируется с абстрактным понятием "Компьютер" (из долговременной памяти) – например со сведениями об этом устройстве – информационными кодами, которые определяют объект (связь, понятие). Коды связываются между собой, создавая образ конкретного компьютера.
В живом организме передача, хранение или обработка информации происходит с помощью биохимических реакций и сообщений – сигнальных молекулярных систем и их превращений за счет химических реакций катализа и разностей концентрации химических веществ. Разность потенциалов действий (электрические сигналы) проводят нервные волокна, с помощью центральной нервной системы. При этом используется и генная информация, которая передается от ДНК к РНК, от РНК – к белку, определяя новую белковую структуру, ее функции.
Второй важный тип исполнителей – конечные автоматы , автоматические (то есть функционирующие определенный промежуток времени без участия человека) устройства, вход, выход и состояния которых можно описать конечными последовательностями сообщений (слов над конечными алфавитами).
Любой конечный автомат реализует некий непустой класс алгоритмов и состоит из совокупности управляющего автомата, который определяет порядок выполнения действий, и операционного автомата, реализующего сами действия, выполняемые автоматом.
Пример. Пример конечного автомата – автомат для продажи газированной воды. Его функционирование можно изобразить графом (рис. 10.1), если ввести следующие множества и события:
X = {1, 3, Г, Ø} – входное множество,
Y = {В, С, О} – выходное множество,
S = {s0 , s1 , s2 , s3} – множество состояний,
1 – входной сигнал "опустить 1 руб.",
3 – входной сигнал "опустить 3 руб.",
Г – входной сигнал "опустить гнутую монету",
Ø– входной сигнал "монета не опущена",
В – выходной сигнал "выдача воды газированной без сиропа",
С – выходной сигнал "выдача газированной воды с сиропом",
О – выходной сигнал "отказ выдать воду",
s0 – первое состояние – "начальное состояние",
s1 – второе состояние – "обработка 1 руб.",
s2 – третье состояние – "обработка 3 руб.",
s3 – четвертое состояние – "состояние неисправности".
Рис. 10.1. Граф автомата для продажи газированной воды
Функционирование конечного автомата
происходит в дискретные моменты времени
t = 0, 1, 2, ..., T. Изменение состояния автомата
,
то есть переход из текущего состояния
в
новое состояние
,
может быть осуществлено либо до выдачи
выходного сигнала
,
либо – после выдачи этого сигнала. В
связи с этим, выделяют два типа конечных
автоматов – автоматы Мили и автоматы
Мура, которые различаются законами
функционирования автоматов.
Законы функционирования автомата Мили:
Законы функционирования автомата Мура:
Функция выходов f автомата Мура явно не зависит от входного сигнала и полностью определяется только самим внутренним состоянием автомата, которое, в свою очередь, определяется входным сигналом.
Пример. Пример конкретного автомата
Мура приведен выше (автомат для газировки).
Приведем абстрактный пример автомата
Мили: Х = {х1, х2} , У = {у1, у2, у3} , S = {s0, s1, s2,
s3, s4, s5} , функции перехода
и
выхода f зададим таблицами соответствий:
– функция перехода |
|
|||||||
s(t – 1) |
S1 |
s1 |
s2 |
s3 |
s3 |
s4 |
s5 |
|
x(t) |
Х1 |
х2 |
x1 |
x2 |
x1 |
x2 |
х2 |
x1 |
s(t) |
S2 |
s3 |
s4 |
s2 |
s4 |
s3 |
s5 |
s5 |
|
||||||||
s(t – 1) |
S1 |
s1 |
s2 |
s2 |
s3 |
s3 |
s4 |
s5 |
x(t) |
X1 |
x2 |
x1 |
x2 |
x1 |
х2 |
х2 |
х1 |
y(t) |
У2 |
у3 |
y1 |
y1 |
y3 |
у2 |
у3 |
y2 |
Компьютер можно рассматривать как совокупность взаимодействующих конечных автоматов. Рассмотрим такую структуру подробнее.
Память компьютера – последовательность ячеек памяти, то есть физических устройств, куда можно записывать или считывать последовательность битов, каждый из которых хранится в нужном разряде.
Пример. Запишем числа 1310, в формате целых чисел в восьмиразрядную ячейку памяти запишется в виде (старший бит будет содержать бит знака числа, например, 1 – если число отрицательно и 0 – если число положительно). Учитывая, что 1310 = 11012, получаем представление вида:
Аналогичным образом представляются в памяти компьютера и вещественные числа: либо по частям (целая часть – отдельно, дробная – отдельно), либо в специальной, так называемой нормализованной форме, для которой хранится отдельно дробная часть (мантисса) и порядок – степень двойки, домножением на которую можно записать данное число.
Пример. Если десятичное число равно 5,25, то есть в двоичной форме – 101,01, то оно записывается в нормализованной форме: 0,10101 с порядком, равным в двоичном виде 101.
Команды, как и числа, размещаются (в битовом изображении) в специальных электронных устройствах – так называемых регистрах.
Регистр – электронное устройство, как и ячейка памяти, запомнающее и хранящее (временно) последовательность битов определенной длины. Регистры реализуются более дорогими и чувствительными физическими устройствами и поэтому, по сравнению с основной памятью компьютера, регистровая память или так называемая кэш-память – невелика.
Пример. Для компьютера с памятью 512 мегабайт основной памяти может быть характерна регистровая память в 64 мегабайта.
Каждой команде ставится в соответствие операция, производится расшифровка кода этой операции, затем извлекаются операнды или числа, над которыми необходимо выполнить операцию. Далее выполняется операция с этими операндами, и результат операции помещается в соответствующую ячейку памяти.
Кроме оперативной памяти, компьютер имеет внешнюю память (ВЗУ) с большой емкостью, но с большим временем записи или считывания информации. Внешняя память реализуется с помощью внешних носителей информации: магнитных или оптических дисков.
Джон фон Нейман предложил ряд принципов, которые легли в основу фон Неймановской или классической архитектуры компьютера :
память состоит из однородных ячеек памяти с адресами;
программа состоит из последовательных команд;
хранение программы и обрабатываемых ею данных – одинаковое, в битовом виде;
команды выполняются последовательно, данные извлекаются в соответствии с командами;
процессор – один и имеет централизованное управление и доступ к памяти.
Структура ЭВМ фон Неймановской архитектуры приведена на рис. 10.2.
Рис. 10.2. Структура ЭВМ фон Неймановской архитектуры
Арифметико-логическое устройство (АЛУ) выполняет арифметические, логические операции.
Пример. Команды АЛУ – просты: "сравнить два числа", "переслать число", "взять дизъюнкцию" и др.
Устройство управления (УУ) организует работу ЭВМ, в частности это устройство извлекает очередную команду из памяти, расшифровывает команду, выбирает из памяти операнды к расшифрованной команде и передает их АЛУ для выполнения расшифрованной операции, а после выполнения пересылает результат для хранения в память. При этом УУ реагирует на нормальный или аварийный ход выполнения операции.
Совокупность АЛУ и УУ, информационно-управляющих линий называется процессором компьютера (его структура приведена на рис. 10.3; жирная линия – информационное взаимодействие, другая – управляющее).
Рис. 10.3. Структура процессора
Обмен информацией с компьютером осуществляется устройствами ввода и устройствами вывода.
Пример. Устройствами ввода являются, например, клавиатура, мышь. Устройствами вывода — дисплей, принтер, плоттер.
Распространенный тип компьютера – персональный компьютер. Персональный компьютер отвечает требованиям малой стоимости, малых размеров, малого энергопотребления, высокой надежности, высокого уровня интеграции компонентов, адаптируемости к разнообразным применениям и др.
Ядро персонального компьютера – системная (материнская плата), на которой размещаются: микропроцессор, микропроцессорная память, интерфейсная система микропроцессора для сопряжения и связи с другими устройствами, генератор тактовых импульсов, контроллеры устройств (схем), интегрированных в материнскую плату, микросхемы ОЗУ и ПЗУ и др.
Другими важными устройствами персонального компьютера являются:
дисковод гибких магнитных дисков; дисковод жестких магнитных дисков;
CD-ROM (устройство только для чтения компакт-дисков) или CD-RW (чтение и перезапись);
монитор (дисплей);
видеокарта (видеоадаптер) для обеспечения связи системного блока и монитора;
клавиатура;
принтер;
сканер;
плоттер (графопостроитель);
дигитайзер (кодирующий планшет);
манипулятор-мышь или манимулятор-трекбол;
звуковая карта (адаптер);
звуковые колонки;
модем и другие устройства.
Классификацию компьютеров проводят по быстродействию, технологии использования и др. Дадим обобщенную и поэтому нечеткую и перекрывающуюся классификацию.
Суперкомпьютеры – наиболее мощные компьютеры в мире, используемые для решения очень сложных и очень больших задач (исследования космоса, ядерной физики, геологии и др.).
Компьютеры универсального назначения, используемые для решения сложных и больших задач.
Персональные компьютеры, используемые в индивидуальном порядке для решения как несложных и небольших, так и сложных, больших задач.
Пример. Супервычислительный центр может быть создан для решения государственных проблем, например обороны, изучения космоса, прогноза погоды, макроэкономического прогнозирования и др. В этом центре могут использоваться как персональные компьютеры на рабочих местах сотрудников, так и компьютеры общего, универсального назначения для решения менее сложных, например вспомогательных проблем.
При работе на компьютере необходимо следовать определенным и простым санитарно-гигиеническим правилам , так как компьютер имеет вредно влияющие на здоровье человека факторы: излучения (инфракрасное, рентгеновское, электромагнитное); вибрация и шум; электростатические поля; ультразвук строчной частоты монитора и др.
Необходимо соблюдать простые санитарно-гигиенические и эргономические правила работы на компьютере, в компьютерном зале:
работа с компьютером не более 4-х часов подряд с 10-минутными перерывами после каждого часа интенсивной работы или после 2-х часов менее интенсивной работы;
расстояние от глаз до поверхности экрана – не менее 0,6 м;
перемещаемость клавиатуры относительно экрана в пределах 0,5-1,0 м;
преимущественно желтый, зеленый, серый или светло-голубой фон дисплея;
температура воздуха в помещении – 15-25 градусов по Цельсию;
относительная влажность помещения – 45-75%;
наличие свободной площади рабочего стола не менее 0,3x1,0 м;
размер экрана по диагонали – не меньше 17 дюймов;
разрешение экрана – не менее 800x600;
частота обновления кадра – не менее 70 Гц;
размер зерна экрана (расстояние между точками на экране) – не более 0,26;
частота кадров (мерцание экрана) – не менее 75 Гц;
стандарты безопасности, например MPR-II.
Минимальный объем знаний, который необходим для решения профессиональных задач и приобщения к знаниям, накопленным с помощью компьютера и различных информационных систем и сетей, а также для решения различных бытовых задач с помощью компьютера, называют компьютеpной гpамотностью.