
- •2. Вычислительные сети с коммутацией пакетов. Принципы функционирования, области применения. Принципы коммутации пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Пропускная способность сетей с коммутацией пакетов
- •1Коммутация сообщений
- •Уровни модели osi
- •[Править]Прикладной уровень
- •[Править]Уровень представления
- •[Править]Сеансовый уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •[Править]Физический уровень
- •4. Прикладной, представительный и сеансовый уровни модели мос. Их функции и назначение Прикладной уровень
- •Уровень представления данных
- •Сеансовый уровень
- •5. Транспортный уровень модели мос Транспортный уровень
- •6. Сетевой уровень модели мос как средство для маршрутизации пакетов данных Сетевой уровень
- •7. Канальный и физический уровни модели мос. Их функции Канальный уровень
- •Физический уровень
- •8. Стек протоколов tcp/ip. Назначение уровней
- •[Править]Уровни стека tcp/ip
- •[Править]Прикладной уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •Структура стека tcp/ip. Краткая характеристика протоколов
- •10. Адресация в ip-сетях Адресация в ip-сетях Типы адресов: физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя)
- •Три основных класса ip-адресов
- •Соглашения о специальных адресах: broadcast, multicast, loopback
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети - протокол dhcp
- •11. Протокол ip. Основные функции и структура ip-пакета
- •[Править]Свойства
- •[Править]Версия 4
- •[Править]Версия 6
- •[Править]Пакет
- •[Править]Версия 4 (iPv4)
- •[Править]Версия 6 (iPv6)
- •12. Протокол tcp. Функции протокола по мультиплексированию и демультиплексированию
- •[Править]Заголовок сегмента tcp
- •[Править]Номер подтверждения
- •[Править]Смещение данных
- •[Править]Зарезервировано
- •[Править]Флаги (управляющие биты)
- •[Править]Окно
- •[Править]Псевдозаголовок
- •[Править]Контрольная сумма
- •[Править]Установка соединения
- •[Править]Передача данных
- •[Править]Завершение соединения
- •[Править]Известные проблемы [править]Максимальный размер сегмента
- •[Править]Обнаружение ошибок при передаче данных
- •[Править]Атаки на протокол
- •[Править]Реализация [править]Освобождение от расчёта контрольной суммы
- •2Концепция портов. Мультиплексирование и демультиплексирование
- •13. Реализация скользящего окна в протоколе tcp
- •Выбор тайм-аута
- •Реакция на перегрузку сети
- •14. Модель протокола b-isdn. Физический уровень
- •15. Модель протокола b-isdn. Уровень атм
- •16. Модель протокола b-isdn. Уровень адаптации атм Уровень адаптации атм (aal)
- •17. Модель протокола b-isdn. Физический уровень, уровень атм и уровень адаптации атм
- •18. Маршрутизация в атм-сетях
- •19. Основные типы топологий локальных вычислительных сетей Топология лвс
- •20. Иерархическая топология лвс и топология типа «звезда» в лвс
- •[Править]Работа в сети
- •21. Шинная топология лвс и кольцевая топология лвс. Особенности применения
- •[Править]Работа в сети
- •[Править]Сравнение с другими топологиями [править]Достоинства
- •[Править]Недостатки
- •[Править]Преимущества и недостатки шинной топологии
- •[Править]Примеры
- •22. Физические среды в лвс. Основные параметры и характеристики Физическая среда
- •23. Витая пара проводов и коаксиальные кабели как среда для передачи информации в лвс Витая пара
- •24. Волоконно-оптические линии связи в глобальных и локальных сетях Волоконно-оптический кабель
- •25. Методы случайного доступа. Пропускная способность. Преимущества и недостатки этих методов Методы случайного доступа
- •Чистая aloha (Pure aloha)
- •Синхронная aloha
- •Aloha с настойчивой стратегией
- •Настойчивый алгоритм с вероятностью передачи 1 (1persistent algorithm)
- •Настойчивый алгоритм с вероятностью передачи p(ppersistent algorithm)
- •Многостанционный доступ с контролем несущей и обнаружением конфликта (csma/cd)
- •Многостанционный доступ с контролем несущей и устранением конфликта (csma/ca)
- •Управляемый доступ. Передача маркера
- •Методы коллективного широкополосного абонентского доступа
- •Краткие итоги
- •26. Сеть Ethernet. Структурная организация. Виды и технические характеристики. Формат кадра. Принцип функционирования
- •[Править]История
- •[Править]Технология
- •[Править]Формат кадра
- •[Править]mac-адреса
- •[Править]Разновидности Ethernet
- •[Править]Ранние модификации Ethernet
- •[Править]10 Мбит/с Ethernet
- •[Править]Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)
- •[Править]Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
- •[Править]10-гигабитный Ethernet (Ethernet 10g, 10 Гбит/с)
- •[Править]40-гигабитный и 100-гигабитный Ethernet
- •[Править]Перспективы
- •27. Cеть Fast Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •Структура Fast Ethernet
- •Подуровень управления логической связью (llc)
- •Заголовок snap
- •Подуровень согласования
- •Управление доступом к среде (mac)
- •28. Cеть Gigabit Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •29. Маркерный доступ на структуре шина. Формат кадров. Кадры управления удс
- •30. Протокольные операции в сетях с маркерным доступом на структуре шина
- •31. Механизм приоритетного доступа при маркерном доступе на структуре шина
- •32. Маркерный доступ на структуре кольцо. Формат кадров. Основные средства управления
- •33. Беспроводные вычислительные сети. Технология Blue Tooth. Микросотовые вычислительные сети беспроводные сети
- •5.1.Типы и компоненты беспроводных сетей
- •5.2. Передача "точка-точка"
- •5.3.Локальные вычислительные сети (беспроводные лвс)
- •5.3.1.Инфракрасные и лазерные беспроводные лвс
- •5.3.2. Беспроводные лвс с радиопередачей данных
- •5.4.Мобильные сети
- •3Технология Bluetooth
- •Что в имени твоем
- •Технические детали
- •Частоты
- •Типы передачи данных
- •Сети Piconet и Scatternet
- •Установление соединения
- •Энергосбережение
- •Защита данных
- •34. Беспроводные вычислительные сети. Технология Wi max
- •Целесообразность использования WiMax как технологии доступа
- •[Править]Фиксированный и мобильный вариант WiMax
- •[Править]Широкополосный доступ
- •[Править]Пользовательское оборудование
- •[Править]Wi-Fi и WiMax
- •[Править]Принцип работы [править]Основные понятия
- •4Микросотовая сеть
- •35. Беспроводные вычислительные сети. Технология передачи изображений высокого качества
- •[Править]Развитие технологии
- •[Править]Стандарты [править]Передача на дальние расстояния
- •[Править]Передача на короткие расстояния
- •[Править]Носители
- •[Править]Стандарты разложения
- •[Править]Защита содержимого
35. Беспроводные вычислительные сети. Технология передачи изображений высокого качества
Телеви́дение высо́кой чёткости, сокр. ТВЧ (англ. High-Definition Television, сокр. HDTV, HD), телевидение в высо́ком разреше́нии — разновидность телевизионных вещательных стандартов, основанных на стандартах разложения изображения, превышающих по разрешающей способности как телевидение стандартной чёткости, так и телевидение повышенной чёткости. Действующие системы ТВЧ также основаны на цифровых технологиях передачи изображения и многоканального звука, использующих компрессию передаваемых данных.
Сравнительные размеры изображений стандартов ТВЧ и обычной чёткости при одинаковом размере квадратного пикселя. Красным цветом обозначен кадр американского ТВ стандарта 480i, жёлтым — европейского 576i
Содержание [убрать]
|
[Править]Развитие технологии
Памятная доска о запуске радиовещательной компанией BBCсистемы электронного телевидения на 405 строк, считавшейся в 1936 годутелевидением высокой чёткости
Термин «высокая чёткость» появился в 1930-е годы. Именно тогда в телевидении произошёл качественный скачок: стали применяться полностью электронные системы, позволившие отказаться от механического сканирования с разрешением 15—200 строк. Среди основных разработчиков новой технологии — Владимир Зворыкин, эмигрировавший в США в 1919 году. Со временем изменялось и само понятие высокой чёткости: британская система «А» с 405 строками разложения, запущенная BBC в1936 году, считалась тогда телевидением высокой чёткости, по сравнению со 180-строчной системой, действовавшей вГермании[1]. В СССР в 1950 году в наградных документах группы разработчиков термин «телевидение высокой чёткости» упоминался применительно к современной системе на 625 строк[2].
В 1949 году во Франции началось вещание по системе «E», использующей 819 строк (из них 737 видимых) при соотношении сторон экрана 4:3. Эта система считается первым в мире стандартом чёрно-белого ТВЧ, однако её использование было ограничено лишь несколькими французскими телеканалами, и с переходом на цветное телевещание во Франции в 1965 году был принят общеевропейский стандарт разложения 625/50. Кроме неудобства кодирования цвета, 819-строчная система, как и большинство последующих систем ТВЧ, занимала слишком широкую полосу частот в эфире — до 11 МГц[2]. Попытки создать телевидение высокой чёткости возобновились в 1970-х годах, когда стандартное телевидение по качеству изображения и размерам экрана приблизилось к своему потолку. Создание стандартов ТВЧ началось в марте 1972 года во время очередного заседания 11-й исследовательской комиссии МККР, на котором также была утверждена первая международная программа по разработке методов цифровой компрессии ТВ-сигнала[3]. Стоит отметить, что системы телевидения высокой чёткости с самого начала разрабатывались не только для передачи высококачественного изображения на расстояние, но и для нужд кинематографа, как стандарт для возможных электронных носителей киноизображения[4].
Первая аналоговая система ТВЧ была продемонстрирована японской телекомпанией NHK в июне 1978 года и основывалась на количестве строк, равном 1125 причересстрочной развёртке и соотношении сторон экрана 5:3[5]. С 1989 года после запуска спутника «Juri BC-3» на территории Японии велось регулярное вещание в этом стандарте ТВЧ в диапазоне 12 ГГц[6]. С конца 1980-х годов началось бурное развитие стандарта NHK, который в 1990 году был предложен МККР в качестве международного вещательного, но не был принят по многим причинам, в том числе из-за малой пригодности аналогового способа передачи сигнала высокой чёткости[6]. Такой стандарт, с соотношением сторон экрана 16:9 и 1035 активными строками занимал при передаче полосу частот 30 МГц.
В противовес японской системе был предложен западноевропейский стандарт «Эврика-95» (англ. Eurica 95, в рамках проекта агентства EUREKA[7]), использующий чересстрочную развёртку на 1250 строк при полукадровой частоте 50 Гц[6]. Этот стандарт применялся в системах наземного вещания HD-MAC, оказавшихся недостаточно устойчивыми[1]. Итогом противоборства стало принятие двухсистемного стандарта на 1125 строк, пригодного как для стран, использующих полевую частоту 60 Гц, так и для стран, поддерживающих 50-герцевую развёртку[8]. Прорыв в распространении ТВЧ произошёл после принятия специальной комиссией МККР в августе1999 года единого мирового цифрового стандарта телевидения высокой чёткости, основанного на предшествующих аналоговых[9]. Разложение на 1125 строк с разной полукадровой частотой перекочевало в цифровое ТВЧ, приняв новое обозначение 1080i, учитывающее количество активных строк[10]. В начале 2000-x годов, одновременно с широким распространением плазменных и жидкокристаллических дисплеев, началось бурное распространение новых телесистем. С этого времени вСША, Австралии и Японии ведётся вещание фильмов и телепередач в цифровых стандартах ТВЧ по платным кабельным и спутниковым каналам. Регулярное вещание вЕвропе началось 1 января 2004 года с запуском спутникового канала Euro-1080 (HD-1)[11]. Российская телекомпания НТВ-Плюс начала пробное вещание в стандарте высокой чёткости 1 декабря 2006 года[12], а с апреля 2007 года транслирует первый в России пакет каналов HD. С середины 2000-х годов начались работы по международной стандартизации наземного вещания по стандартам высокой чёткости.