
- •2. Вычислительные сети с коммутацией пакетов. Принципы функционирования, области применения. Принципы коммутации пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Пропускная способность сетей с коммутацией пакетов
- •1Коммутация сообщений
- •Уровни модели osi
- •[Править]Прикладной уровень
- •[Править]Уровень представления
- •[Править]Сеансовый уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •[Править]Физический уровень
- •4. Прикладной, представительный и сеансовый уровни модели мос. Их функции и назначение Прикладной уровень
- •Уровень представления данных
- •Сеансовый уровень
- •5. Транспортный уровень модели мос Транспортный уровень
- •6. Сетевой уровень модели мос как средство для маршрутизации пакетов данных Сетевой уровень
- •7. Канальный и физический уровни модели мос. Их функции Канальный уровень
- •Физический уровень
- •8. Стек протоколов tcp/ip. Назначение уровней
- •[Править]Уровни стека tcp/ip
- •[Править]Прикладной уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •Структура стека tcp/ip. Краткая характеристика протоколов
- •10. Адресация в ip-сетях Адресация в ip-сетях Типы адресов: физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя)
- •Три основных класса ip-адресов
- •Соглашения о специальных адресах: broadcast, multicast, loopback
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети - протокол dhcp
- •11. Протокол ip. Основные функции и структура ip-пакета
- •[Править]Свойства
- •[Править]Версия 4
- •[Править]Версия 6
- •[Править]Пакет
- •[Править]Версия 4 (iPv4)
- •[Править]Версия 6 (iPv6)
- •12. Протокол tcp. Функции протокола по мультиплексированию и демультиплексированию
- •[Править]Заголовок сегмента tcp
- •[Править]Номер подтверждения
- •[Править]Смещение данных
- •[Править]Зарезервировано
- •[Править]Флаги (управляющие биты)
- •[Править]Окно
- •[Править]Псевдозаголовок
- •[Править]Контрольная сумма
- •[Править]Установка соединения
- •[Править]Передача данных
- •[Править]Завершение соединения
- •[Править]Известные проблемы [править]Максимальный размер сегмента
- •[Править]Обнаружение ошибок при передаче данных
- •[Править]Атаки на протокол
- •[Править]Реализация [править]Освобождение от расчёта контрольной суммы
- •2Концепция портов. Мультиплексирование и демультиплексирование
- •13. Реализация скользящего окна в протоколе tcp
- •Выбор тайм-аута
- •Реакция на перегрузку сети
- •14. Модель протокола b-isdn. Физический уровень
- •15. Модель протокола b-isdn. Уровень атм
- •16. Модель протокола b-isdn. Уровень адаптации атм Уровень адаптации атм (aal)
- •17. Модель протокола b-isdn. Физический уровень, уровень атм и уровень адаптации атм
- •18. Маршрутизация в атм-сетях
- •19. Основные типы топологий локальных вычислительных сетей Топология лвс
- •20. Иерархическая топология лвс и топология типа «звезда» в лвс
- •[Править]Работа в сети
- •21. Шинная топология лвс и кольцевая топология лвс. Особенности применения
- •[Править]Работа в сети
- •[Править]Сравнение с другими топологиями [править]Достоинства
- •[Править]Недостатки
- •[Править]Преимущества и недостатки шинной топологии
- •[Править]Примеры
- •22. Физические среды в лвс. Основные параметры и характеристики Физическая среда
- •23. Витая пара проводов и коаксиальные кабели как среда для передачи информации в лвс Витая пара
- •24. Волоконно-оптические линии связи в глобальных и локальных сетях Волоконно-оптический кабель
- •25. Методы случайного доступа. Пропускная способность. Преимущества и недостатки этих методов Методы случайного доступа
- •Чистая aloha (Pure aloha)
- •Синхронная aloha
- •Aloha с настойчивой стратегией
- •Настойчивый алгоритм с вероятностью передачи 1 (1persistent algorithm)
- •Настойчивый алгоритм с вероятностью передачи p(ppersistent algorithm)
- •Многостанционный доступ с контролем несущей и обнаружением конфликта (csma/cd)
- •Многостанционный доступ с контролем несущей и устранением конфликта (csma/ca)
- •Управляемый доступ. Передача маркера
- •Методы коллективного широкополосного абонентского доступа
- •Краткие итоги
- •26. Сеть Ethernet. Структурная организация. Виды и технические характеристики. Формат кадра. Принцип функционирования
- •[Править]История
- •[Править]Технология
- •[Править]Формат кадра
- •[Править]mac-адреса
- •[Править]Разновидности Ethernet
- •[Править]Ранние модификации Ethernet
- •[Править]10 Мбит/с Ethernet
- •[Править]Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)
- •[Править]Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
- •[Править]10-гигабитный Ethernet (Ethernet 10g, 10 Гбит/с)
- •[Править]40-гигабитный и 100-гигабитный Ethernet
- •[Править]Перспективы
- •27. Cеть Fast Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •Структура Fast Ethernet
- •Подуровень управления логической связью (llc)
- •Заголовок snap
- •Подуровень согласования
- •Управление доступом к среде (mac)
- •28. Cеть Gigabit Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •29. Маркерный доступ на структуре шина. Формат кадров. Кадры управления удс
- •30. Протокольные операции в сетях с маркерным доступом на структуре шина
- •31. Механизм приоритетного доступа при маркерном доступе на структуре шина
- •32. Маркерный доступ на структуре кольцо. Формат кадров. Основные средства управления
- •33. Беспроводные вычислительные сети. Технология Blue Tooth. Микросотовые вычислительные сети беспроводные сети
- •5.1.Типы и компоненты беспроводных сетей
- •5.2. Передача "точка-точка"
- •5.3.Локальные вычислительные сети (беспроводные лвс)
- •5.3.1.Инфракрасные и лазерные беспроводные лвс
- •5.3.2. Беспроводные лвс с радиопередачей данных
- •5.4.Мобильные сети
- •3Технология Bluetooth
- •Что в имени твоем
- •Технические детали
- •Частоты
- •Типы передачи данных
- •Сети Piconet и Scatternet
- •Установление соединения
- •Энергосбережение
- •Защита данных
- •34. Беспроводные вычислительные сети. Технология Wi max
- •Целесообразность использования WiMax как технологии доступа
- •[Править]Фиксированный и мобильный вариант WiMax
- •[Править]Широкополосный доступ
- •[Править]Пользовательское оборудование
- •[Править]Wi-Fi и WiMax
- •[Править]Принцип работы [править]Основные понятия
- •4Микросотовая сеть
- •35. Беспроводные вычислительные сети. Технология передачи изображений высокого качества
- •[Править]Развитие технологии
- •[Править]Стандарты [править]Передача на дальние расстояния
- •[Править]Передача на короткие расстояния
- •[Править]Носители
- •[Править]Стандарты разложения
- •[Править]Защита содержимого
[Править]Прикладной уровень
Основная статья: Прикладной уровень
Прикладной уровень (уровень приложений; англ. application layer) — верхний уровень модели, обеспечивающий взаимодействие пользовательских приложений с сетью:
позволяет приложениям использовать сетевые службы:
удалённый доступ к файлам и базам данных,
пересылка электронной почты;
отвечает за передачу служебной информации;
предоставляет приложениям информацию об ошибках;
формирует запросы к уровню представления.
Протоколы прикладного уровня: RDP, HTTP, SMTP, SNMP, POP3, FTP, XMPP, OSCAR, Modbus, SIP, TELNET и другие.
[Править]Уровень представления
Основная статья: Представительский уровень
Представительский уровень (уровень представления; англ. presentation layer) обеспечивает преобразование протоколов и шифрование/дешифрование данных. Запросы приложений, полученные с прикладного уровня, на уровне представления преобразуются в формат для передачи по сети, а полученные из сети данные преобразуются в формат приложений. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.
Уровень представлений обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой.
Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.
Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информациейEBCDIC, например, это может быть мейнфрейм компании IBM, а другая — американский стандартный код обмена информацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.
Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.
Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT — формат изображений, применяемый для передачи графики QuickDraw между программами.
Другим форматом представлений является тэгированный формат файлов изображений TIFF, который обычно используется для растровых изображений с высокимразрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG.
Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов (англ. Musical Instrument Digital Interface, MIDI) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG, используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, иQuickTime — стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.
Протоколы уровня представления: AFP — Apple Filing Protocol, ICA — Independent Computing Architecture, LPP — Lightweight Presentation Protocol, NCP — NetWare Core Protocol, NDR — Network Data Representation, XDR — eXternal Data Representation, X.25 PAD — Packet Assembler/Disassembler Protocol.