- •2. Вычислительные сети с коммутацией пакетов. Принципы функционирования, области применения. Принципы коммутации пакетов
- •Виртуальные каналы в сетях с коммутацией пакетов
- •Пропускная способность сетей с коммутацией пакетов
- •1Коммутация сообщений
- •Уровни модели osi
- •[Править]Прикладной уровень
- •[Править]Уровень представления
- •[Править]Сеансовый уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •[Править]Физический уровень
- •4. Прикладной, представительный и сеансовый уровни модели мос. Их функции и назначение Прикладной уровень
- •Уровень представления данных
- •Сеансовый уровень
- •5. Транспортный уровень модели мос Транспортный уровень
- •6. Сетевой уровень модели мос как средство для маршрутизации пакетов данных Сетевой уровень
- •7. Канальный и физический уровни модели мос. Их функции Канальный уровень
- •Физический уровень
- •8. Стек протоколов tcp/ip. Назначение уровней
- •[Править]Уровни стека tcp/ip
- •[Править]Прикладной уровень
- •[Править]Транспортный уровень
- •[Править]Сетевой уровень
- •[Править]Канальный уровень
- •Структура стека tcp/ip. Краткая характеристика протоколов
- •10. Адресация в ip-сетях Адресация в ip-сетях Типы адресов: физический (mac-адрес), сетевой (ip-адрес) и символьный (dns-имя)
- •Три основных класса ip-адресов
- •Соглашения о специальных адресах: broadcast, multicast, loopback
- •Отображение физических адресов на ip-адреса: протоколы arp и rarp
- •Отображение символьных адресов на ip-адреса: служба dns
- •Автоматизация процесса назначения ip-адресов узлам сети - протокол dhcp
- •11. Протокол ip. Основные функции и структура ip-пакета
- •[Править]Свойства
- •[Править]Версия 4
- •[Править]Версия 6
- •[Править]Пакет
- •[Править]Версия 4 (iPv4)
- •[Править]Версия 6 (iPv6)
- •12. Протокол tcp. Функции протокола по мультиплексированию и демультиплексированию
- •[Править]Заголовок сегмента tcp
- •[Править]Номер подтверждения
- •[Править]Смещение данных
- •[Править]Зарезервировано
- •[Править]Флаги (управляющие биты)
- •[Править]Окно
- •[Править]Псевдозаголовок
- •[Править]Контрольная сумма
- •[Править]Установка соединения
- •[Править]Передача данных
- •[Править]Завершение соединения
- •[Править]Известные проблемы [править]Максимальный размер сегмента
- •[Править]Обнаружение ошибок при передаче данных
- •[Править]Атаки на протокол
- •[Править]Реализация [править]Освобождение от расчёта контрольной суммы
- •2Концепция портов. Мультиплексирование и демультиплексирование
- •13. Реализация скользящего окна в протоколе tcp
- •Выбор тайм-аута
- •Реакция на перегрузку сети
- •14. Модель протокола b-isdn. Физический уровень
- •15. Модель протокола b-isdn. Уровень атм
- •16. Модель протокола b-isdn. Уровень адаптации атм Уровень адаптации атм (aal)
- •17. Модель протокола b-isdn. Физический уровень, уровень атм и уровень адаптации атм
- •18. Маршрутизация в атм-сетях
- •19. Основные типы топологий локальных вычислительных сетей Топология лвс
- •20. Иерархическая топология лвс и топология типа «звезда» в лвс
- •[Править]Работа в сети
- •21. Шинная топология лвс и кольцевая топология лвс. Особенности применения
- •[Править]Работа в сети
- •[Править]Сравнение с другими топологиями [править]Достоинства
- •[Править]Недостатки
- •[Править]Преимущества и недостатки шинной топологии
- •[Править]Примеры
- •22. Физические среды в лвс. Основные параметры и характеристики Физическая среда
- •23. Витая пара проводов и коаксиальные кабели как среда для передачи информации в лвс Витая пара
- •24. Волоконно-оптические линии связи в глобальных и локальных сетях Волоконно-оптический кабель
- •25. Методы случайного доступа. Пропускная способность. Преимущества и недостатки этих методов Методы случайного доступа
- •Чистая aloha (Pure aloha)
- •Синхронная aloha
- •Aloha с настойчивой стратегией
- •Настойчивый алгоритм с вероятностью передачи 1 (1persistent algorithm)
- •Настойчивый алгоритм с вероятностью передачи p(ppersistent algorithm)
- •Многостанционный доступ с контролем несущей и обнаружением конфликта (csma/cd)
- •Многостанционный доступ с контролем несущей и устранением конфликта (csma/ca)
- •Управляемый доступ. Передача маркера
- •Методы коллективного широкополосного абонентского доступа
- •Краткие итоги
- •26. Сеть Ethernet. Структурная организация. Виды и технические характеристики. Формат кадра. Принцип функционирования
- •[Править]История
- •[Править]Технология
- •[Править]Формат кадра
- •[Править]mac-адреса
- •[Править]Разновидности Ethernet
- •[Править]Ранние модификации Ethernet
- •[Править]10 Мбит/с Ethernet
- •[Править]Быстрый Ethernet (Fast Ethernet, 100 Мбит/с)
- •[Править]Гигабитный Ethernet (Gigabit Ethernet, 1 Гбит/с)
- •[Править]10-гигабитный Ethernet (Ethernet 10g, 10 Гбит/с)
- •[Править]40-гигабитный и 100-гигабитный Ethernet
- •[Править]Перспективы
- •27. Cеть Fast Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •Структура Fast Ethernet
- •Подуровень управления логической связью (llc)
- •Заголовок snap
- •Подуровень согласования
- •Управление доступом к среде (mac)
- •28. Cеть Gigabit Ethernet. Cтруктурная организация. Особенности построения физического уровня
- •29. Маркерный доступ на структуре шина. Формат кадров. Кадры управления удс
- •30. Протокольные операции в сетях с маркерным доступом на структуре шина
- •31. Механизм приоритетного доступа при маркерном доступе на структуре шина
- •32. Маркерный доступ на структуре кольцо. Формат кадров. Основные средства управления
- •33. Беспроводные вычислительные сети. Технология Blue Tooth. Микросотовые вычислительные сети беспроводные сети
- •5.1.Типы и компоненты беспроводных сетей
- •5.2. Передача "точка-точка"
- •5.3.Локальные вычислительные сети (беспроводные лвс)
- •5.3.1.Инфракрасные и лазерные беспроводные лвс
- •5.3.2. Беспроводные лвс с радиопередачей данных
- •5.4.Мобильные сети
- •3Технология Bluetooth
- •Что в имени твоем
- •Технические детали
- •Частоты
- •Типы передачи данных
- •Сети Piconet и Scatternet
- •Установление соединения
- •Энергосбережение
- •Защита данных
- •34. Беспроводные вычислительные сети. Технология Wi max
- •Целесообразность использования WiMax как технологии доступа
- •[Править]Фиксированный и мобильный вариант WiMax
- •[Править]Широкополосный доступ
- •[Править]Пользовательское оборудование
- •[Править]Wi-Fi и WiMax
- •[Править]Принцип работы [править]Основные понятия
- •4Микросотовая сеть
- •35. Беспроводные вычислительные сети. Технология передачи изображений высокого качества
- •[Править]Развитие технологии
- •[Править]Стандарты [править]Передача на дальние расстояния
- •[Править]Передача на короткие расстояния
- •[Править]Носители
- •[Править]Стандарты разложения
- •[Править]Защита содержимого
Настойчивый алгоритм с вероятностью передачи 1 (1persistent algorithm)
При
таком алгоритме станция следит за
состоянием передающей среды. Если среда
занята, то станция переходит в режим
ожидания и предпринимает попытку
передачи, как только среда освободится.
При возникновении конфликта станция
прекращает сеанс связи и вновь начинает
по случайному закону. Согласно этому
алгоритму, если среда свободна, то сеанс
связи начинается с вероятностью
.
Настойчивый алгоритм с вероятностью передачи p(ppersistent algorithm)
Он отличается от предыдущего только тем, что передача осуществляется при наличии свободного канала через время, определяемое по случайному закону. В случае конфликта время также определяется по случайному закону (чаще всего по экспоненциальному закону, приведенному выше).
Например,
вероятность
означает,
что станция пошлет информацию после
освобождения среды с вероятностью 0,3 и
не пошлет с вероятностью 0,7. Технически
это реализуется за счет того, что станция
имеет генератор случайных чисел, который
генерирует случайные числа от 1 до 100.
Если в данный момент получено число 20
и меньше, то станция пошлет информацию,
в противном случае информация не
посылается.
Такая стратегия позволяет уменьшить вероятность конфликта.
Многостанционный доступ с контролем несущей и обнаружением конфликта (csma/cd)
При использовании метода CSMA/CD (Carrier Sense Multiple Access with Collision Detection) - например, в сети Ethernet (будет рассмотрена далее). применяется отсрочка передачи (backoff) . Каждая станция посылает кадр, и если среда передачи свободна, то все проходит в обычном режиме и станция заканчивает свою работу. Если в процессе передачи возник конфликт, то передача осуществляется вновь, но для уменьшения вероятности конфликта станция ожидает некоторое время, которое называется время отсрочки передачи. Основной вопрос - чему равна величина этого времени. Наверное, рационально, чтобы станция во второй раз ожидала несколько больше, чем до времени первого конфликта, а после второй передачи - несколько больше, чем до времени второго конфликта, и т. д.
При
показательном законе отсрочки принято,
что станция должна ждать интервал
времени между
и
(максимальное
время распространения), где
-
число попыток передачи. Другими словами,
время ожидания передачи равно:
от
до
(максимальное
время распространения) в первый раз;
от
до
(максимальное
время распространения) во второй раз и
т. д.
Время внутри этого интервала выбирается по случайному закону.
Алгоритм передачи следующий. Если станция имеет информацию для передачи, устанавливается параметр . При возникновении конфликта первая из станций, обнаружившая его, посылает другим станциям сигнал о сетевом конфликте (jam signal).
Станции, получившие этот сигнал:
удаляют полученные кадры;
увеличивают значение параметра отсрочки
Значение параметра отсрочки ограничено (обычно числом 15).
В случае если число попыток не превышено, станция ожидает случайное время, основанное на текущем значении параметра отсрочки передачи.
На рис. 1.6 показан пример передачи информации согласно методу CSMA/CD. Первый канал начал передачу. Вторая станция в это время задерживает передачу (предполагается, что она передавала информацию ранее), после чего начинает передачу снова. Первая станция после некоторой паузы начала передачу, но во время передачи третья станция тоже начала передачу. Станции обнаруживают конфликт, прекращают передачу и возобновляют ее по истечении случайного времени. В данном примере случайное время передачи не вызвало повторного конфликта.
увеличить изображение Рис. 1.6. Метод доступа с контролем несущей и обнаружением конфликта (CSMA/CD)
При большой загрузке среды вероятность повторного конфликта велика (возможно поступление информации от другой станции). Поэтому метод CSMA/CD эффективно работает при удельной нагрузке (занятие среды в единицу времени) среды 0,3 (30%), после чего повторение попыток приводит к резкому ухудшению характеристик сети.
