Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВОПР 1 - 7_МОДЕЛИР_СИСТЕМ.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
616.96 Кб
Скачать

2.3. Модели описания, решения, алгоритмические, программные

В ходе решения поставленной задачи (реализации цели моделирования) математическая модель претерпевает определенные изменения. Процесс возникновения и развития произвольной системы принято именовать термином “жизненный цикл”. В данном случае речь пойдет о жизненном цикле модели.

Первой фазой жизненного цикла модели является переложение на язык математических соотношений цели моделирования, которая обычно задается в словесном (вербальном, неформализованном) виде. В результате такого действия получается модель описания.

Далее строится модель решения – набор математических выражений, указывающих способ получения решения задачи. Существует три разновидности этой модели: аналитическая, численная и имитационная.

Аналитическая модель – явное выражение искомой величины через известные. Численная модель – набор выражений, позволяющих получить решение в виде набора чисел. Имитационная модель – переложение на язык компьютера формальных правил функционирования моделируемого объекта; она позволяет при заданном входе получить значение выхода и, по сути, реализует метод проб.

Пример 2.12. Пусть имеем уравнение аx2 + bx + c = 0, которое описывает некоторый объект и, следовательно, является моделью описания. Описание способа нахождения значения х представляет собой модель решения. Для квадратного уравнения существует известная формула:

Это явное выражение для искомой величины х, следовательно, это аналитическая модель решения.

В том случае, когда аналитическая модель слишком сложная (формулы решения уравнений 3-й и 4-й степени) либо вообще не существует (для уравнений 5-й степени и выше), то используется численная модель.

Пример 2.13. Например: дано уравнение f(x) = 0, где f – произвольная непрерывная функция. Для решения можно использовать численный метод Ньютона (ка­сательных). Для этого выбирают начальное приближение x0, а затем строят последовательность уточняющих решений по формуле:

xk + 1 = xk (k = 0, 1…); .

Для приближённого решения уравнения f(x) = 0 можно также задать достаточно много различных значений x и выбрать то из них, для которого | f(x) | = min, т.е. f(x) ближе всего к 0. Это простейший вид имитационной модели для решения уравнения. Часто в качестве значений входных параметров берутся случайные значения, полученные с помощью датчиков случайных чисел. В этом случае говорят, что используется случайная имитация.

Дадим краткую характеристику каждой модели, которая поможет вы­бирать ту или иную модель в каждом конкретном случае.

Аналитическая модель является наиболее точной, кроме того, она по­зволяет получить решение в общем виде. Поэтому если это возможно, всегда надо стараться получить именно аналитическую модель решения.

Численная модель более универсальна, практически не уступает по точности аналитической модели, но не позволяет получить решение в общем виде.

Имитационная модель наименее точна, но является самой простой. Ее используют для получения окончательного решения только при моделирова­нии сложных объектов, для которых невозможно составить прочие модели решений. В более простых случаях имитационную модель применяют для поиска начального приближения для получения окончательного решению с помощью численной модели, либо для предварительного анализа объекта, позволяющего получить неко­торое начальное представление о предмете моделирования.

Алгоритмическая модель – запись решения в виде алгоритма. Ее отличие от модели решения состоит в том, что последняя не обязана обладать всеми свойствами алгоритма: конечность, определённость, результативность, массовость, эффективность. Чаще всего модель решения не обладает свойством конечности.

Программная модель – запись алгоритма на языке программирова­ния.