
- •Вопрос9 Виды генетических рекомбинаций у бактерий
- •Вопрос10 Методы генетического анализа. Днк-гибридизация. Пцр, их место в лабораторной диагностике
- •Вопрос11 Антибиотики. Определение. Классификация антибиотиков по источнику получения. Способы получения
- •Вопрос12. Антибиотики. Определение. Классификация антибиотиков по химической структуре, механизму и спектру действия. Представители каждой групп
- •Вопрос13 Осложнения антибиотикотерапии. Лекарственная устойчивость микробов, механизмы ее формирования (биохимические, генетические). Пути ее преодоления
- •Вопрос14 Вакцины. Определение. Классификация. Требования, предъявляемые к вакцинным препаратам.
- •Вопрос15 Реакция преципитации. Механизм. Компоненты. Применение
- •Вопрос16 Анатоксины, их получение. Практическое применение
- •Вопрос17. Понятие об инфекции. Условия возникновения инфекционного процесса
- •Вопрос19 Понятие об иммунитете. Виды иммунитета
- •Вопрос20. Источники загрязнения лекарственных средств
- •Вопрос21 Препараты применяемые для восстановления нормальной микрофлоры (пробиотики, эубиотики
- •Вопрос22 Методы выделения чистых культур Понятие "культура", "штамм", "колония", "клон". Питательные среды и их классификация.
- •Вопрос23 Рост и размножение бактерий. Фазы размножения бактериальной популяции в жидкой питательной среде
- •Вопрос24 Применение бактериофагов в медицине и микробиологии
- •Вопрос25Плазмиды бактерий и их значение. Использование плазмид в генной инженерии
- •Вопрос26. Стерильные и нестерильные лекарственные формы. Методы бактериологического контроля
- •Вопрос27 Нормальная микрофлора тела человека и ее значение. Дисбактериозы
- •Значение микрофлоры тела для человека
- •Вопрос42 Рост и размножение бактерий. Фазы размножения бактериальной популяции в жидкой питательной среде
- •Вопрос28. Особенности биологии вирусов.
- •Вопрос29 Микрофлора воздуха и санитарно-бактериологическое исследование воздуха в аптеках
- •Вопрос30 . Серологические реакции применяемые для диагностики инфекционных заболеваний
- •Вопрос31. Санитарно-бактериологический контроль дистиллированной воды
- •Вопрос32 Микрофлора воды. Санитарно-бактериологическое исследование воды: определение микробного числа, колииндекса
- •Вопрос33 Микрофлора воздуха и санитарно-бактериологическое исследование воздуха в аптеках
- •Вопрос34 Иммунный ответ. Его типы. Первичный и вторичный иммунный ответ. Иммунологическая память
- •Вопрос 35 Антигены бактерий. Свойства. Классификация по локализации и по специфичности
- •Вопрос36 Источники загрязнения лекарственных средств.
- •Вопрос37. Характеристика возбудителя ботулизма. Принципы микробиологической диагностики.
- •Вопрос38. Характеристика возбудителя холеры. Принципы лабораторной диагностики. Препараты для специфической профилактики и этиотропной терапии
- •Вопрос39. Методы определения чувствительности к антибиотикам. Диско-диффузионный метод
- •Вопрос40. Иммуноиндикация в диагностике инфекционных заболеваний
- •Вопрос 41. Плазмиды бактерий и их значение. Использование плазмид в генной инженерии
- •Вопрос43 Дыхание бактерий. Типы дыхания бактерий. Методы культивирования анаэробов
- •Вопрос45 Питательные среды и их классификация
- •4. Морфология и строение микроорганизмов
- •10. Споры и спорообразование
- •16. Рост и размножение бактерий
- •11. Химический состав микробной клетки
- •20. Формы изменчивости микроорганизмов
- •19. Генетика микроорганизмов
- •18. Основные принципы культивирования бактерий
Вопрос40. Иммуноиндикация в диагностике инфекционных заболеваний
Для диагностики вирусных инфекций широкое применение нашли методы иммунодиагностики (серодиагностики и иммуноиндикации). Они реализуются в самых разнообразных реакциях иммунитета:
радиоизотопный иммунный анализ (РИА),
иммуноферментный анализ (ИФА),
реакция иммунофлюоресценции (РИФ),
реакция связывания комплемента (РСК),
реакция пассивной гемагглютинации (РПГА),
реакции торможения гемагглютинации (РТГА) и другие.
Вопрос 41. Плазмиды бактерий и их значение. Использование плазмид в генной инженерии
Значение плазмид для медицины состоит в том, что они контролируют синтез различных факторов патогенности у многих видов бактерий, в том числе у возбудителей чумы, сибирской язвы, иерсиниозов, дизентерии, эшерихиозов и др. Не вызывает сомнения, что возникновение диареегенных кишечных палочек (энтеротоксигенных, энтеропатогенных, энтероинвазивных и др.) является следствием приобретения ими плазмид, которые наделяют их факторами адгезии, инвазии и способностью синтезировать термолабильные и термостабильные энтеротоксины. Наличие в природе таких плазмид (особенно с широким кругом хозяев) может стать причиной образования новых вариантов патогенных бактерий.
Не менее важную роль играют R-плазмиды. В условиях широкого применения антибиотиков и других химиопрепаратов происходит естественный отбор тех штаммов патогенных бактерий, которые являются носителями R-плазмид. Среди них формируются новые эпидемические клоны патогенных бактерий. В настоящее время они играют ведущую роль в эпидемиологии инфекционных болезней, и от их распространения во многом зависит эффективность антибиотико- и химиотерапии, а в итоге — здоровье и жизнь людей.
Общебиологическое значение плазмид заключается в том, что они выполняют по крайней мере три важнейшие функции для бактерий, обеспечивая одновременно существование как бактерий, так и собственное. Во-первых, они контролируют у бактерий обмен генетическим материалом. Во-вторых, контролируя синтез факторов патогенности, они обусловливают благоприятные возможности для размножения патогенных бактерий в естественных для них условиях (в организме животного и человека), а следовательно, для сохранения этих видов в природе. В-третьих, плазмиды являются уникальным биологическим средством самозащиты бактерий, так как они обеспечивают их приобретенным и наследуемым специфическим иммунитетом против различных химических (лекарственных и иных веществ) и других агентов.
Плазмиды широко используются в генной инженерии для переноса генетической информации и генетических манипуляций. Для этого создаются искусственные плазмиды — векторы, состоящие из частей, взятых из разных генетических источников, а также из искусственно созданных фрагментов ДНК.
Вопрос43 Дыхание бактерий. Типы дыхания бактерий. Методы культивирования анаэробов
Дыхание является самой совершенной формой окислительного процесса и наиболее эффективным способом получения энергии. Главное преимущество дыхания состоит в том, что энергия окисляемого вещества — субстрата, на котором микроорганизм растет, используется наиболее полно. Поэтому в процессе дыхания перерабатывается гораздо меньше субстрата для получения определенного количества энергии, чем, например, при брожениях.
По типу дыхания все микроорганизмы разделяются на облигатные (строгие) аэробы, облигатные анаэробы и факультативные (необязательные) анаэробы.
Облигатные аэробы (микобактерии туберкулеза и др.) живут и развиваются при свободном доступе кислорода, т. е. реакции окисления осуществляются у них при участии молекулярного кислорода с высвобождением большого количества
Облигатные анаэробы (клостридии столбняка, ботулизма и др.) способны жить и размножаться только в отсутствие свободного кислорода воздуха. Дыхание у анаэробов происходит путем ферментации субстрата с Образованием небольшого количества энергии.
Факультативные анаэробы могут размножаться как при наличии молекулярного кислорода, так и при отсутствии его. К ним относят большинство патогенных и сапрофитных бактерий. Процессы разложения органических веществ в бескислородных условиях, сопровождающиеся выделением энергии, называют также брожением
Механические методы:
1. Посев уколом в столбик сахарного агара.
2. Метод Виньял-Вейона: в расплавленный и остуженный до 50° С агар вносят исследуемую анаэробную культуру, перемешивают и засасывают в пастеровскую пипетку, конец которой запаивают. Через 24 — 48 часов столбике агара вырастают ясно видимые колонии микробов — анаэробов.
3. Метод Перетца. Исследуемый материал вносят в 3 пробирки с физиологическим раствором, а затем в 3 пробирки с остуженным до 50° С МПА. Содержимое пробирок перемешивают и выливают в 3 стерильные чашки Петри, на дно которых предварительно кладут стерильное предметное стекло, через 18-20 часов инкубации в термостате под пластинками стекла вырастают анаэробы
Физические методы:
1. Анаэростат — создание вакуумных условий.
2. Аппарат Киппа — замена воздуха индифферентным газом (водородом).
3. Среда Китт-Тароцци — содержит кусочки печени, обладающие высокой адсорбционной способностью, 0.5% глюкозы. Перед посевом среду кипятят на водяной бане не менее 15 минут, сверху заливают слоем вазелиного масла, чтобы предохранить посев от проникновения кислорода,
Химические методы
1. Прибор Омелянского — для поглощения кислорода используется пирогаллол.
2. Среда Вильсон — Блера. Содержит глюкозу, сернисто-кислый натрий, хлорид железа. Анаэробы образуют черные колонии за счет восстановления сернисто-кислого натрия в сернистый натрий, который, соединяясь с хлоридом железа, образуют осадок черного цвета -сернистое железо.
Биологический метод Фортнера
Чашку Петри с толстым слоем агара делят на 2 половины на одну половину засевают облигатный аэроб — «чудесную» палочку, на другую половину чашки засевают исследуемую анаэробную культуру. Чашку заливают растопленным парафином. Через 24 — 48 часов в чашке вырастают аэробы, затем, когда запас кислорода исчерпывается, начинают размножаться анаэробы
Вопрос44 Понятие о метаболизме. Анаболизм и катаболизм. Особенности метаболизма у бактерий и методы его изучения. Ферменты бактерий. Использование ферментативной активности бактерий при их идентификации.
МЕТАБОЛИЗМ - это обмен веществ, химические превращения, протекающие от
момента поступления питательных веществ в живой организм до момента, когда конечные продукты этих превращений выделяются во внешнюю среду.
Основными метаболическими процессами являются анаболизм (ассимиляция) и катаболизм (диссимиляция).
Анаболизм, или ассимиляция (от лат. assimilatio — уподобление), представляет собой эндотермический процесс уподобления поступающих в клетку веществ веществам самой клетки. Она является «созидательным» метаболизмом.
Важнейшим моментом ассимиляции является синтез белков и нуклеиновых кислот. Частным случаем анаболизма является фотосинтез, который представляет собой биологический процесс, при котором органическое вещество синтезируется из воды, двуокиси углерода и неорганических солей под влиянием лучистой энергии Солнца. Фотосинтез в зеленых растениях является автотрофным типом обмена.
Катаболизм, или диссимиляция (от лат. dissimilis — расподобление), является экзотермическим процессом, при котором происходит распад веществ с освобождением энергии. Этот распад происходит в результате переваривания и дыхания. Переваривание представляет собой процесс распада крупных молекул на более мелкие молекулы, тогда как дыхание является процессом окислительного катаболизма простых Сахаров, глицерина, жирных кислот и дезаминированных аминокислот, в результате которого происходит освобождение жизненно необходимой химической энергии. Эта энергия используется для пополнения запасов аденозинтри-фосфата (АТФ), который является непосредственным донором (источником) клеточной энергии, универсальной энергетической «валютой» в биологических системах.
Метаболизм (обмен веществ) бактерий представляет собой совокупность двух взаимосвязанных противоположных процессов катаболизма и анаболизма
Особенности метаболизма у бактерий состоят в том, что:
его интенсивность имеет достаточно высокий уровень, что возможно обусловлено гораздо большим соотношением поверхности к единице массы, чем у многоклеточных;
процессы диссимиляции преобладают над процессами ассимиляции;
субстратный спектр потребляемых бактериями веществ очень широк - от углекислого газа, азота, нитритов, нитратов до органических соединений, включая антропогенные вещества - загрязнители окружающей среды (обеспечивая тем самым процессы ее самоочищения);
бактерии имеют очень широкий набор различных ферментов - это также способствует высокой интенсивности метаболических процессов и широте субстратного спектра.
Изучают метаболизм бактерий с помощью физико-химических и биохимических методов исследования в процессе культивирования бактерий в определенных условиях на специальных питательных средах, содержащих то или иное соединение в качестве субстрата для трансформации. Такой подход позволяет судить об обмене веществ путем более детального изучения процессов различных видов обмена (белков, углеводо
Ферменты распознают соответствующие метаболиты (субстраты), вступают с ними во взаимодействие и ускоряют химические реакции. Являются белками, участвуют в процессах анаболизма (синтеза) и катабо лизма (распада), то есть метаболизма. Многие ферменты взаимосвязаны со структурами микробной клетки. Например, в цитоплазматической мембране имеются окислительно-восстановительные ферменты, участвующие в дыхании и делении клетки. Окислительно-восстановительные ферменты цитоплазматической мембраны и ее производных обеспечивают энергией интенсивные процессы биосинтеза различных структур, в том числе клеточной стенки.
Определение ферментативной активности бактерий играет огромную роль в их идентификации. Например, все аэробы или факультативные анаэробы обладают супероксид дисмутазой и каталазой — ферментами, защищающими клетку от токсичных продуктов кислородного метаболизма. Практически все облигатные анаэробы не синтезируют эти ферменты. Только одна группа аэробных бактерий — молочнокислые бактерии каталазонегативны, но аккумулируют пероксидазу — фермент, катализирующий окисление органических соединений под действием Н202 (восстанавливается до воды). Наличие аргининдигидролазы — диагностический признак, позволяющий различить сапрофитические виды Pseudomonas от фитопатогенных. Среди пяти основных групп семейства Enterobacteriaceae только две — Escherichiae и Erwiniae— не синтезируют уреазу. Часто вирулентность штамма связана с повышенной активностью ферментов, ответственных за синтез токсинов