
- •Кафедра химической и техногенной экологии промышленная экология
- •Учебное пособие для студентов
- •Раздел 5. Безотходные и малоотходные производства . . . . . . . . . . . . . . . . . . . . . . . 97
- •Тема 1. Введение
- •1.1.Предмет промышленной экологии. . .
- •1.2. Производство и потребление
- •Большую угрозу для человечества представляет радиационное загрязнение окружающей среды, связанное, прежде всего, с аварийными ситуациями.
- •1.3 . Краткие исторические сведения
- •Литература
- •Раздел 2. Эколого-экономические системы
- •2.1. Общая трактовка
- •2.1. Модели ээс: структура и потоки
- •Состоя-ний
- •Круговорот
- •2.2. Соизмерение производственных и природных потенциалов
- •Литература
- •Раздел 3. Технологии и технологические системы
- •3.1. Виды технологий
- •3.2. Природоохранные технологии
- •3.3. Технологические системы
- •VIII – биохимическая очистка
- •Раздел 4. Основные технологические процессы
- •4.1. Классификация основных технологических процессов
- •4.2. Кинетические закономерности основных технологических процессов
- •4.3. Процессы периодические, непрерывные, полуперидические.
- •4.4. Гидромеханические процессы
- •4.4.1. Классификация неоднородных систем
- •4.4.2. Осаждение
- •Отстаивание
- •Осаждение под действием центробежной силы (оцс)
- •4.4.3. Фильтрование
- •4.4.4. Перемешивание в жидкой среде
- •4.4.5. Псевдоожижение
- •4.4. Тепловые процессы
- •4.4.1. Общая характеристика тепловых процессов
- •5.4.2. Нагревание
- •Нагревание водяным паром
- •На рисунке 4.19 схема аппарата с рубашкой для нагревания глухим паром.
- •Нагревание топочными газами
- •Нагревание промежуточными теплоносителями
- •Нагревание электрическим током
- •5.4.3. Охлаждение до обыкновенных температур
- •5. Выпаривание
- •5.4.5. Выпаривание
- •4.6. Массообменные процессы
- •Реактор
- •Продукты реакции
- •Очевидно, что любой концентрации X соответствует равновесная концентрация Yp, и наоборот, любой концентрации y соответствует равновесная концентрация Хр, т.Е.
- •4.6.1. Абсорбция
- •Принципиальные схемы абсорбции
- •4.6.2. Ректификация
- •Принцип ректификации
- •Ректификация
- •Ректификация многокомпонентных смесей.
- •Принципиальные схемы процессов ректификации
- •Абсорбционная и ректификационная аппаратура
- •4.6.3. Эстракция жидкостная экстракция
- •Экстракция
- •Ректификация
- •Экстракция из твердых веществ
- •4.6.4. Адсорбция
- •Принципиальные схемы адсорбционных процессов
- •4.6.5. Сушка
- •Равновесные соотношения в процессах сушки
- •Принципиальные схемы сушильных процессов
- •4.6.6. Кристаллизация
- •Раздел 5. Безотходные и малоотходные производства
- •5.1. Определение и концепция безотходного производства
- •5.2. Коэффициенты для оценки степени приближения традиционной технологии к безотходной.
- •5.3. Принципы безотходного производства
- •Годовая добыча и сроки исчерпания запасов нефти, угля и газа
- •5.4. Основные направления развития мало- и безотходных производств
- •Гидроэнергия
- •Энергия ветра
- •Солнечная энергия
- •Тепло Земли
- •Энергия морских приливов
- •Водородная энергетика
- •Правило шлейфа
- •Электроэнергия на автомобильном транспорте
- •Заключение
- •Рециркуляция уплотненного ила
- •Компостирование твердых органических отходов
- •Переработка твердых отходов на свалках
- •Санитарное захоронение отходов
- •Противофильтрационный экран
4.4. Тепловые процессы
4.4.1. Общая характеристика тепловых процессов
Технологические процессы, скорость протекания которых определяется скоростью подвода или отвода тепла, называются тепловыми процессами, а аппаратура, предназначенная для проведения этих процессов, называется тепловой, или теплоисполъзующей, аппаратурой. К тепловым процессам относятся нагревание, охлаждение, испарение и конденсация.
Нагревание — повышение температуры перерабатываемых материалов путем подвода к ним тепла.
Охлаждение — понижение температуры перерабатываемых материалов путем отвода от них тепла.
Конденсация — сжижение паров какого-либо вещества путем отвода от них тепла.
Испарение — перевод в парообразное состояние какой-либо жидкости путем подвода к ней тепла.
Частным случаем испарения является весьма широко распространенный в химической технике процесс выпаривания — концентрирования при кипении растворов твердых нелетучих веществ путем удаления жидкого летучего растворителя в виде паров.
В тепловых процессах взаимодействуют не менее чем две среды с различными температурами, при этом тепло передается самопроизвольно (без затраты работы) только от среды с большей температурой к среде с меньшей температурой.
Среда с более высокой температурой, отдающая при теплообмене тепло, называется теплоносителем, среда с более низкой температурой, воспринимающая при теплообмене тепло, называется холодильным агентом (хладоагентом).
В химической технике приходится осуществлять тепловые процессы при самых различных температурах — от близких к абсолютному нулю до нескольких тысяч градусов. Для каждого конкретного процесса, протекающего в определенном интервале температур, подбираются наиболее подходящие теплоносители и хладоагенты. Выбранные теплоносители и хладоагенты должны быть вполне химически стойкими в рабочих условиях процесса, не давать отложений на стенках аппаратов, не вызывать коррозии аппаратуры и легко транспортироваться по трубам.
Перечень наиболее распространенных в химической технике теплоносителей и хладоагентов с указанием условий их применения приведен в табл. 4.1.
Таблица 4.1.
Наиболее распространенные теплоносители (хладоагенты)
Теплоносители (хладоагенты) |
Рабочие условия в установках |
|
Температура, 0С |
Давление, атм. |
|
Азот, кислород, воздух |
До – 210 |
До 200 |
Этан, этилен, фреоны |
От – 70 до – 150 |
До 40 |
Вода |
От 0 до 100 От 100 до 374 |
1 1 – 225 |
Насыщенный водяной пар |
От 0 до 250 |
От 1 до 40 |
Дымовые (топочные) газы |
От 420 до 1000 |
1 |
Твердые теплоносители (шамот, и др) |
До 1500 |
1 |
Основной характеристикой любого теплового процесса является количество передаваемого в процессе тепла; от этой величины зависят размеры тепловой аппаратуры. Основным размером теплового аппарата является теплопередающая поверхность, или поверхность теплообмена.
Часто в процессе теплообмена нагреваемые или охлаждаемые материалы изменяют агрегатное состояние: испаряются, конденсируются, плавятся или кристаллизуются. Особенности таких процессов теплообмена заключаются в том, что тепло подводится к материалам или отводится от них при постоянной температуре и распространяется не в одной, а в двух фазах.