
- •140101.65 – Тепловые электрические станции
- •140104.65 – Промышленная теплоэнергетика
- •140100.65 – Теплоэнергетика
- •1. Информация о дисциплине «техническая термодинамика»
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий
- •Раздел 1. Основные законы
- •1.2. Первый закон термодинамики
- •1.3. Второй закон термодинамики
- •Раздел 2. Реальные газы. Водяной пар (40 часов)
- •2.1.Свойства и фазовые переходы
- •Реальных газов
- •2.2. Характеристики и процессы водяного пара
- •2.3. Влажный воздух
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •Раздел 3.Компрессоры.
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.3. Циклы газотурбинных установок (гту)
- •Раздел 4. Циклы паротурбиннных
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •4.3. Циклы парогазовой и атомной установок
- •Раздел 5. Циклы холодильных и теплонасосных
- •Раздел 6. Элементы химической термодинамики
- •6.2. Уравнение максимальной работы химической рекции
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины
- •2.2.2. Тематический план дисциплины для студентов заочной формы обучения
- •Техническая термодинамика
- •Раздел 1.
- •Основные законы термодинамики
- •Раздел 2.
- •Реальные
- •Водяной пар
- •Раздел 3.
- •Компрессоры.
- •Циклы тепловых двигателей
- •Раздел 4.
- •Циклы паротурбинных установок
- •Раздел 5.
- •Циклы холодильных и теплонасосных установок
- •Раздел 6.
- •Элементы химической термодинамики
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очно – заочная форма обучения)
- •2.5.1.2. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очно – заочная форма обучения)
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6. Рейтинговая система по дисциплине «Техническая термодинамика»
- •3.Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций по дисциплине «техническая термодинамика» Введение
- •Раздел 1. Основные законы термодинамики
- •1.1. Термодинамика идеального газа
- •Основные понятия и определения термодинамики.
- •1.1.1. Законы идеального газа
- •1.1.2. Уравнение состояния
- •Теплоемкость
- •Последнюю формулу еще можно представить в виде
- •Смеси идеальных газов
- •Вопросы для самопроверки
- •1.2. Первый закон термодинамики
- •Обратимые равновесные процессы в идеальных газах
- •Разделив уравнение (б) на уравнение (а), найдем
- •Изопараметрические процессы
- •IV. Адиабатный процесс
- •V. Политропные процессы
- •Вопросы для самопроверки
- •1.3. Второй закон термодинамики
- •1.3.1. Круговые процессы
- •1.3.2. Прямой цикл Карно
- •1.3.3. Обратный цикл Карно
- •1.3.4. Второй закон термодинамики
- •1.3.5. Эксергетический метод исследования
- •1.3.6. Эксергия неподвижного рабочего тела
- •1.3.7. Эксергия потока рабочего тела
- •1.3.8. Эксергия потока теплоты
- •Вопросы для самопроверки
- •Раздел 2. Реальные газы. Водяной пар
- •2.1. Свойства и фазовые переходы реальных газов
- •2.1.1. Реальные газы и их свойства
- •Критические параметры некоторых веществ
- •2.1.2. Условия равновесия при фазовом переходе
- •2.1.3. Термические и калорические свойства реальных газов
- •Вопросы для самопроверки
- •2.2. Характеристики и процессы водяного пара
- •2.2.1. Водяной пар и основные процессы водяного пара
- •Испарение - процесс образования пара, происходящий с поверхности жидкости при любой температуре.
- •2.2.2. Изопараметрические процессы изменения состояния водяного пара в pv -, Ts - и hs - диаграммах
- •Вопросы для самопроверки
- •2.3. Влажный воздух
- •2.3.1. Свойства влажного воздуха
- •2.3.2. Теплоёмкость и энтальпия влажного воздуха
- •Вопросы для самопроверки
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •2.4.1. Термодинамика газового потока
- •Замена переменных приводит уравнение к виду
- •2.4.2. Термодинамика потока в каналах переменного сечения
- •2.4.3. Истечение газов через сужающиеся сопла (конфузоры)
- •Вопросы для самопроверки
- •2.4.4. Истечение газа с учетом трения
- •2.4.5. Истечение водяного пара
- •2.5. Расчет процессов дросселирования
- •2.5.1. Уравнение процесса дросселирования
- •Вопросы для самопроверки
- •Раздел 3. Компрессоры. Циклы тепловых двигателей
- •3.1. Виды компрессоров и процессы в компрессоре
- •3.1.1. Назначение и типы компрессоров
- •3.1.2. Многоступенчатое сжатие
- •3.1.3. Мощность привода идеального компрессора и коэффициенты полезного действия (кпд)
- •Вопросы для самопроверки
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.2.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •Цикл Oтто
- •Цикл Дизеля
- •Цикл Тринклера
- •3.3. Циклы газотурбинных установок (гту)
- •3.3.1. Принципиальная схема и цикл гту с изобарным подводом теплоты
- •3.3.3. Регенерация теплоты в цикле гту. Многоступенчатое сжатие в компрессоре и ступенчатый подвод теплоты
- •Вопросы для самопроверки
- •3.4. Циклы реактивных двигателей
- •И турбореактивного двигателей
- •Вопросы для самопроверки
- •Раздел 4. Циклы паротурбинных установок (пту)
- •4.1. Идеальный и действительный циклы пту
- •4.1.1. Идеальный цикл Ренкина
- •4.1.2. Цикл Ренкина на сухом насыщенном и перегретом паре
- •Следовательно, полезная работа цикла Ренкина равна
- •Термический кпд цикла Ренкина
- •Введем понятие относительного эффективного кпд
- •Далее введем относительный электрический кпд
- •Тогда расход пара на турбину можно выразить в виде
- •Тогда кпд всей пту определится произведением
- •Вопросы для самопроверки
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •Выражение для термического кпд основного (без промежуточного перегрева) цикла Ренкина:
- •Регенеративный цикл паротурбинных установок
- •Вопросы для самопроверки
- •4.3. Циклы парогазовой и атомной установок
- •4.3.1. Циклы парогазовых установок
- •4.3.2. Схема и цикл атомной теплоэнергетической установки
- •Вопросы для самопроверки
- •4.4. Циклы и устройства прямого преобразования теплоты в электроэнергию
- •4.4.1. Циклы установок с магнитогидродинамическим генератором (мгд-генератор)
- •4.4.2. Термодинамические и термоэлектронные преобразователи
- •Вопросы для самопроверки
- •Раздел 5. Циклы холодильных и теплонасосных установок
- •5.1. Циклы воздушной и парокомпрессорной холодильных установок
- •5.1.1. Циклы холодильных установок
- •5.1.2. Цикл воздушной холодильной установки
- •5.1.3. Цикл парокомпрессионной холодильной установки
- •5.1.4. Абсорбционная холодильная установка
- •Вопросы для самопроверки
- •5.2. Передача теплоты тепловым насосом и тепловой трубой
- •5.2.1. Тепловой насос
- •5.2.2. Передача теплоты тепловыми трубами
- •Вопросы для самопроверки
- •Раздел 6. Элементы химической термодинамики
- •6.1. Законы термодинамики в термохимии
- •6.1.1. Основные понятия химической термодинамики
- •6.1.2. Тепловой эффект химической реакции
- •6.1.3. Зависимость теплоты реакции от температуры
- •6.1.4. Химическое равновесие
- •Основные определения
- •Константа химического равновесия
- •Химические константы I и условные химические константы j
- •6.1.5. Диссоциация
- •Вопросы для самопроверки
- •6.2. Уравнение максимальной работы химической реакции
- •6.2.1. Химическое сродство. Мера химического сродства
- •Вопросы для самопроверки
- •Глоссарий (словарь терминов)
- •Охрана труда и техника безопасности при проведении лабораторных работ
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы
- •Контрольная работа 1
- •Контрольная работа 2
- •Контрольная работа 3
- •4.2. Методические указания к выполнению контрольных заданий и практических работ
- •Искомая мощность привода компрессора
- •4.3. Тренировочные и контрольные тесты
- •Вопрос 1. Выберите определение понятия «прямой цикл».
- •Вопрос 2. Как зависит холодильный коэффициент идеальной воздушной холодильной установки от степени повышения давления в компрессоре р2/р1?
- •Вопрос 4. Выберите наиболее полное определение понятия «идеальный газ».
- •4.4. Итоговый контроль. Вопросы для подготовки к экзамену
- •Приложение п.1. Теплофизические свойства сухого воздуха при нормальном атмосферном давлении
- •П.3. Средняя массовая теплоемкость газов при постоянном давлении, [4]
- •П.4. Средняя объемная теплоемкость газов при постоянном давлении,
- •П.5. Относительные молекулярные массы, плотности и объемы киломолей при нормальных условиях, критические температуры и критические давления некоторых газов
- •П.6. Энтальпия 1 м3 газов и влажного воздуха (кДж/м3)
- •П.7. Диаграмма h-s водяного пара
- •П.8. Насыщенный водяной пар (по давлениям)
6.1.2. Тепловой эффект химической реакции
В химических реакциях, кроме выделения или поглощения теплоты, изменяется внутренняя энергия системы и совершается внешняя работа, которая состоит из работы расширения (сжатия) и работы против электрических, магнитных и других сил.
Выделение теплоты в реакции и совершение работы осуществляется за счет уменьшения внутренней энергии системы, которая определяется согласно первому закону термодинамики по уравнению
.
(6.2)
При этом уменьшение внутренней энергии U1 – U2 называется тепловым эффектом химической реакции. При обратимых процессах получается максимальная работа и выделяется минимальное количество теплоты
.
(6.3)
В реакциях, в которых совершается только работа расширения или сжатия, а другой работы не совершается, имеет место минимальная работа и максимальная теплота
(6.4)
или
,
где
Qmax
–теплота реакции; М-масса рабочего
тела;
-работа изменения объема;
-тепловой
эффект реакции.
Если реакция протекает между твердыми и жидкими веществами, то она почти не сопровождается изменением объема. То же можно сказать про газовые реакции, происходящие в замкнутых оболочках.
В этих случаях, применительно 1 кг рабочего тела, имеем:
,
т.е. тепловой эффект при постоянном объеме равен количеству выделенной теплоты.
Если химическая реакция протекает при постоянном давлении
,
(6.5)
т.е. теплота изобарной реакции равна уменьшению энтальпии системы.
Соотношение между qv и qp может быть получено из следующей формулы
.
Изменение
(
)
объема системы обусловливается почти
исключительно возникновением или
исчезновением некоторого числа
грамм-молекул
газообразных веществ, где
-изменение
числа молей вещества в реакции.
Так
как
,
то
.
(6.6)
В
реакциях, где участвуют только
конденсированные системы, т.е. твердые
и жидкие тела, можно принимать
.
Тепловые реакции qv и qp зависят от условий (температуры и давления). Для удобства сравнивания и вычисления qv и qp относят к условиям, принятым за стандартные.
Стандартные
теплоты реакции вычисляются при р=0,101
МПа и t=25ºС
(298 К) и обозначаются
,
предлагается, что при этих условиях
газы можно рассматривать как идеальные.
Закон Гесса. Согласно закону Гесса тепловой эффект химического процесса зависит только от начального и конечного состояния системы, но не зависит от пути, по которому протекает процесс.
6.1.3. Зависимость теплоты реакции от температуры
Суммарные теплоемкости веществ при постоянном объеме соответственно до и после реакции равны
,
(6.7)
где
u1
и u2
–внутренняя энергия системы соответственно
в начальном и конечном состояниях;
,
следовательно
,
где
называется
температурным коэффициентом теплоты
изохорной реакции или температурным
коэффициентом теплового эффекта реакции.
Суммарные
теплоемкости начальных и полученных
веществ
и
определяются
при расчетах, как теплоемкости смеси
газов.
Соответственно температурный коэффициент теплоты изобарной реакции равен разности суммарных теплоемкостей ср исходных и полученных веществ:
.
(6.8)
Следовательно
в общем случае полученные соотношения
имеют вид
:
если с1 – с2 >0, то теплота реакции при увеличении температуры увеличивается;
если с1 – с2 <0, то теплота реакции при увеличении температуры уменьшается;
если с1 – с2 =0, то теплота реакции не зависит от температуры.
Взаимозависимость температурного коэффициента теплоты реакции и разности соответствующих суммарных теплоемкостей исходных и конечных компонентов реакции называется законом Кирхгофа.
Уравнения
для
и
позволяют
вывести расчетное уравнение q=f(T),
которое применяется при вычислении
теоретическим путем теплоты реакции
при заданной температуре.