Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техническая термодинамика опрн. консп..doc
Скачиваний:
1
Добавлен:
10.01.2020
Размер:
7 Mб
Скачать

2.3. Влажный воздух

[1], с. 459…468; [2], с. 126…138

Влагосодержание влажного воздуха. Абсолютная и относительная влажность. Точка росы. Газовая постоянная и плотность влажного воздуха. Энтальпия влажного воздуха, hd - диаграмма для влажного воздуха. Температура мокрого термометра. Измерение относительной влажности и точки росы с помощью психрометра и гигрометра.

2.4. Термодинамика газового потока. Истечение газов через сопло

[1], с. 269…297; [2], с. 139…174

Уравнение первого закона термодинамики для потока. Уравнение неразрывности потока. Уравнение механической энергии для потока (уравнение Бернулли). Располагаемая работа. Адиабатные течения. Параметры полного адиабатного торможения потока. Сопло и диффузор. Скорость истечения газа (пара) из сужающегося сопла. Расход газа (пара) при истечении из сужающегося сопла. Максимальный расход и критическая скорость истечения. Критическое отношение давлений. Скорость звука. Зависимость скорости и расхода от отношения давлений. Условия перехода скорости потока через скорость звука. Комбинированное сопло Лаваля. Расчет скорости истечения водяного пара по изменению энтальпии. Истечение с учетом необратимости. Коэффициент скорости и расхода. Принцип обращения воздействия. Понятие о тепловом, механическом и расходном соплах. Течение с трением. Течение по длинным трубам. Смешение потоков газа.

2.5. РАСЧЕТ ПРОЦЕССОВ ДРОССЕЛИРОВАНИЯ

[1], с. 236…251

Дросселирование. Уравнение процесса. Условное изображение процесса дросселирования на hs - диаграмме. Потеря эксергии при дросселировании. Изменение параметров при дросселировании. Дифференциальный адиабатный дроссель - эффект. Температура инверсии. Кривая инверсии. Использование процесса дросселирования в технике.

Раздел 3.Компрессоры.

ЦИКЛЫ ТЕПЛОВЫХ ДВИГАТЕЛЕЙ

(50 часов)

3.1. ВИДЫ КОМПРЕССОРОВ

И ПРОЦЕССЫ В КОМПРЕССОРЕ

[1], с. 257…269; [2], с. 174…183

Компрессоры. Виды и назначение компрессоров. Работа, затрачиваемая на привод одноступенчатого поршневого компрессора. Изотермическое, адиабатное и политропное сжатие. Вредное пространство. Преимущества многоступенчатого сжатия. Оптимальное распределение перепада давления по ступеням многоступенчатого компрессора. Теоретическая и индикаторная диаграммы компрессора и их изображение в координатах р, v и T, s. Отводимая теплота. Необратимое адиабатное сжатие в компрессоре. Центробежные компрессоры.

3.2. Циклы двигателей внутреннего сгорания (двс)

[1], с. 319…330; [2], с. 183…192

Циклы двигателей внутреннего сгорания (ДВС). Индикаторная диаграмма и идеальный цикл ДВС. Цикл с изохорным подводом теплоты (цикл Отто). Цикл с изобарным подводом теплоты (цикл Дизеля). Цикл со смешанным подводом теплоты (цикл Тринклера). Сравнение термических КПД циклов ДВС. Термодинамический анализ КПД циклов по средним температурам подвода и отвода теплоты. Удельный расход топлива.

3.3. Циклы газотурбинных установок (гту)

[1], с. 330…346; [2], с. 192…204

Циклы газотурбинных установок (ГТУ). Принципиальная схема и цикл ГТУ с изобарным подводом теплоты. Термический КПД цикла. Методы повышения термического КПД ГТУ. Отношение работы, затрачиваемой на привод компрессора, к работе турбины. Регенерация теплоты в цикле ГТУ. Многоступенчатое сжатие в компрессоре и ступенчатый подвод теплоты. Замкнутые схемы ГТУ. Рабочие тела замкнутых схем. Цикл ГТУ с изохорным подводом теплоты.

3.4. ЦИКЛЫ РЕАКТИВНОГО

И РАКЕТНОГО ДВИГАТЕЛЕЙ

[1], с. 346…356; [2], с. 200…204

Циклы реактивных двигателей. Схема, цикл и термический КПД прямоточного и турбореактивного двигателей. Схема и цикл ракетного двигателя.