
- •140101.65 – Тепловые электрические станции
- •140104.65 – Промышленная теплоэнергетика
- •140100.65 – Теплоэнергетика
- •1. Информация о дисциплине «техническая термодинамика»
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий
- •Раздел 1. Основные законы
- •1.2. Первый закон термодинамики
- •1.3. Второй закон термодинамики
- •Раздел 2. Реальные газы. Водяной пар (40 часов)
- •2.1.Свойства и фазовые переходы
- •Реальных газов
- •2.2. Характеристики и процессы водяного пара
- •2.3. Влажный воздух
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •Раздел 3.Компрессоры.
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.3. Циклы газотурбинных установок (гту)
- •Раздел 4. Циклы паротурбиннных
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •4.3. Циклы парогазовой и атомной установок
- •Раздел 5. Циклы холодильных и теплонасосных
- •Раздел 6. Элементы химической термодинамики
- •6.2. Уравнение максимальной работы химической рекции
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины
- •2.2.2. Тематический план дисциплины для студентов заочной формы обучения
- •Техническая термодинамика
- •Раздел 1.
- •Основные законы термодинамики
- •Раздел 2.
- •Реальные
- •Водяной пар
- •Раздел 3.
- •Компрессоры.
- •Циклы тепловых двигателей
- •Раздел 4.
- •Циклы паротурбинных установок
- •Раздел 5.
- •Циклы холодильных и теплонасосных установок
- •Раздел 6.
- •Элементы химической термодинамики
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очно – заочная форма обучения)
- •2.5.1.2. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очно – заочная форма обучения)
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6. Рейтинговая система по дисциплине «Техническая термодинамика»
- •3.Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций по дисциплине «техническая термодинамика» Введение
- •Раздел 1. Основные законы термодинамики
- •1.1. Термодинамика идеального газа
- •Основные понятия и определения термодинамики.
- •1.1.1. Законы идеального газа
- •1.1.2. Уравнение состояния
- •Теплоемкость
- •Последнюю формулу еще можно представить в виде
- •Смеси идеальных газов
- •Вопросы для самопроверки
- •1.2. Первый закон термодинамики
- •Обратимые равновесные процессы в идеальных газах
- •Разделив уравнение (б) на уравнение (а), найдем
- •Изопараметрические процессы
- •IV. Адиабатный процесс
- •V. Политропные процессы
- •Вопросы для самопроверки
- •1.3. Второй закон термодинамики
- •1.3.1. Круговые процессы
- •1.3.2. Прямой цикл Карно
- •1.3.3. Обратный цикл Карно
- •1.3.4. Второй закон термодинамики
- •1.3.5. Эксергетический метод исследования
- •1.3.6. Эксергия неподвижного рабочего тела
- •1.3.7. Эксергия потока рабочего тела
- •1.3.8. Эксергия потока теплоты
- •Вопросы для самопроверки
- •Раздел 2. Реальные газы. Водяной пар
- •2.1. Свойства и фазовые переходы реальных газов
- •2.1.1. Реальные газы и их свойства
- •Критические параметры некоторых веществ
- •2.1.2. Условия равновесия при фазовом переходе
- •2.1.3. Термические и калорические свойства реальных газов
- •Вопросы для самопроверки
- •2.2. Характеристики и процессы водяного пара
- •2.2.1. Водяной пар и основные процессы водяного пара
- •Испарение - процесс образования пара, происходящий с поверхности жидкости при любой температуре.
- •2.2.2. Изопараметрические процессы изменения состояния водяного пара в pv -, Ts - и hs - диаграммах
- •Вопросы для самопроверки
- •2.3. Влажный воздух
- •2.3.1. Свойства влажного воздуха
- •2.3.2. Теплоёмкость и энтальпия влажного воздуха
- •Вопросы для самопроверки
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •2.4.1. Термодинамика газового потока
- •Замена переменных приводит уравнение к виду
- •2.4.2. Термодинамика потока в каналах переменного сечения
- •2.4.3. Истечение газов через сужающиеся сопла (конфузоры)
- •Вопросы для самопроверки
- •2.4.4. Истечение газа с учетом трения
- •2.4.5. Истечение водяного пара
- •2.5. Расчет процессов дросселирования
- •2.5.1. Уравнение процесса дросселирования
- •Вопросы для самопроверки
- •Раздел 3. Компрессоры. Циклы тепловых двигателей
- •3.1. Виды компрессоров и процессы в компрессоре
- •3.1.1. Назначение и типы компрессоров
- •3.1.2. Многоступенчатое сжатие
- •3.1.3. Мощность привода идеального компрессора и коэффициенты полезного действия (кпд)
- •Вопросы для самопроверки
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.2.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •Цикл Oтто
- •Цикл Дизеля
- •Цикл Тринклера
- •3.3. Циклы газотурбинных установок (гту)
- •3.3.1. Принципиальная схема и цикл гту с изобарным подводом теплоты
- •3.3.3. Регенерация теплоты в цикле гту. Многоступенчатое сжатие в компрессоре и ступенчатый подвод теплоты
- •Вопросы для самопроверки
- •3.4. Циклы реактивных двигателей
- •И турбореактивного двигателей
- •Вопросы для самопроверки
- •Раздел 4. Циклы паротурбинных установок (пту)
- •4.1. Идеальный и действительный циклы пту
- •4.1.1. Идеальный цикл Ренкина
- •4.1.2. Цикл Ренкина на сухом насыщенном и перегретом паре
- •Следовательно, полезная работа цикла Ренкина равна
- •Термический кпд цикла Ренкина
- •Введем понятие относительного эффективного кпд
- •Далее введем относительный электрический кпд
- •Тогда расход пара на турбину можно выразить в виде
- •Тогда кпд всей пту определится произведением
- •Вопросы для самопроверки
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •Выражение для термического кпд основного (без промежуточного перегрева) цикла Ренкина:
- •Регенеративный цикл паротурбинных установок
- •Вопросы для самопроверки
- •4.3. Циклы парогазовой и атомной установок
- •4.3.1. Циклы парогазовых установок
- •4.3.2. Схема и цикл атомной теплоэнергетической установки
- •Вопросы для самопроверки
- •4.4. Циклы и устройства прямого преобразования теплоты в электроэнергию
- •4.4.1. Циклы установок с магнитогидродинамическим генератором (мгд-генератор)
- •4.4.2. Термодинамические и термоэлектронные преобразователи
- •Вопросы для самопроверки
- •Раздел 5. Циклы холодильных и теплонасосных установок
- •5.1. Циклы воздушной и парокомпрессорной холодильных установок
- •5.1.1. Циклы холодильных установок
- •5.1.2. Цикл воздушной холодильной установки
- •5.1.3. Цикл парокомпрессионной холодильной установки
- •5.1.4. Абсорбционная холодильная установка
- •Вопросы для самопроверки
- •5.2. Передача теплоты тепловым насосом и тепловой трубой
- •5.2.1. Тепловой насос
- •5.2.2. Передача теплоты тепловыми трубами
- •Вопросы для самопроверки
- •Раздел 6. Элементы химической термодинамики
- •6.1. Законы термодинамики в термохимии
- •6.1.1. Основные понятия химической термодинамики
- •6.1.2. Тепловой эффект химической реакции
- •6.1.3. Зависимость теплоты реакции от температуры
- •6.1.4. Химическое равновесие
- •Основные определения
- •Константа химического равновесия
- •Химические константы I и условные химические константы j
- •6.1.5. Диссоциация
- •Вопросы для самопроверки
- •6.2. Уравнение максимальной работы химической реакции
- •6.2.1. Химическое сродство. Мера химического сродства
- •Вопросы для самопроверки
- •Глоссарий (словарь терминов)
- •Охрана труда и техника безопасности при проведении лабораторных работ
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы
- •Контрольная работа 1
- •Контрольная работа 2
- •Контрольная работа 3
- •4.2. Методические указания к выполнению контрольных заданий и практических работ
- •Искомая мощность привода компрессора
- •4.3. Тренировочные и контрольные тесты
- •Вопрос 1. Выберите определение понятия «прямой цикл».
- •Вопрос 2. Как зависит холодильный коэффициент идеальной воздушной холодильной установки от степени повышения давления в компрессоре р2/р1?
- •Вопрос 4. Выберите наиболее полное определение понятия «идеальный газ».
- •4.4. Итоговый контроль. Вопросы для подготовки к экзамену
- •Приложение п.1. Теплофизические свойства сухого воздуха при нормальном атмосферном давлении
- •П.3. Средняя массовая теплоемкость газов при постоянном давлении, [4]
- •П.4. Средняя объемная теплоемкость газов при постоянном давлении,
- •П.5. Относительные молекулярные массы, плотности и объемы киломолей при нормальных условиях, критические температуры и критические давления некоторых газов
- •П.6. Энтальпия 1 м3 газов и влажного воздуха (кДж/м3)
- •П.7. Диаграмма h-s водяного пара
- •П.8. Насыщенный водяной пар (по давлениям)
2.2.2. Изопараметрические процессы изменения состояния водяного пара в pv -, Ts - и hs - диаграммах
Рассмотрим примеры решения конкретных термодинамических задач при помощи этих диаграмм, приведенных на рис. 2.4 – 2.7. Для общности рассуждений предположим, что начало и конец исследуемых процессов лежат в различных зонах (в двухфазной зоне и зоне перегретого пара).
1. Изохорный процесс. v = const, dv = 0, приведен на рис. 2.4.
Необходимо исследовать процесс 1-2.
Дано: р1, v1, р2, (v2=v1).
Необходимо найти: Т1, x1, Т2, s1, s2, h1, h2, u1, u2, l1-2, q1-2.
Рис. 2.4
Решение
Допустим, что начало процесса, находится в зоне влажного пара. На pv - диаграмме (см. рис. 2.4,а) по заданным значениям р1, v1 находим изобару р1 = const и изохору v1 = const, а также изотерму Т1 = const, которая в зоне влажного пара совпадает с изобарой p1 = const. Точка пересечения изобары p1 = const и изохоры vi = const соответствует началу процесса 1. Через эту же точку 1 проходит линия равной сухости х1 = const. Восстанавливаем из точки 1 изохору до ее пересечения с изобарой р2 = const. Точка их пересечения соответствует концу процесса - 2. Через точку 2 проходит и изотерма Т2 = const. Таким образом, используя pv – диаграмму, определили Т1, Т2, х1.
На Ts - диаграмме (см. рис. 2.4,б) находим изохору v1 = const и линию равной сухости, соответствующей x1. Очевидно, что точка их пересечения соответствует началу процесса 1, координаты которой s1 и T1. Далее находим изобару p2 = const, точка пересечения которой с изохорой v1 = const соответствует концу процесса 2. Координаты точки 2 суть s2 и T2. Следовательно, Ts - диаграмма позволила дополнительно определить s1, s2.
На hs – диаграмме (см. рис. 2.4,в) на пересечении изобар р1 = const, р2 = const с изохорой v1 = const определяем соответственно начальное 1 и конечное 2 состояния процесса. Очевидно, что координатами точек 1 и 2 являются s1, h1; s2, h2.
Далее определяем: u1=h1-p1·v1, u2=h2-p2·v2.
В соответствии с первым законом термодинамики при dv = 0, так как v1=v2=const
δq
= du + p · dv = du
δq = du
q1-2
= u2-u1
= h2
– h1
– v1(p2
–p1).
(2.11)
Поскольку в этом процессе dv = 0, совершаемая работа будет
δl = p · dv = 0 l1-2 = 0. (2.12)
Задача решена.
2. Изобарный процесс. P = const, dp = 0, приведен на рис. 2.5.
Исследуем процесс 1-2.
Дано: р1, v1, v2, (p2 = p1).
Необходимо найти: х1, Т1, Т2, s1, s2, h1, h2, l1-2, q1-2.
Рис. 2.5
Решение
Предположим, что начало процесса расположено в зоне влажного пара. Для решения данной задачи используем сразу hs – диаграмму (рис. 2.5,в), поскольку она обладает наибольшей информативностью. (Хотя на рис. нетрудно проследить возможность использования как pv -, так и Ts - диаграмм для решения данной задачи). На hs - диаграмме находим изохоры v1 = const и v2 = const, а также изобару р1 = const (по изобаре р1 = const определяем температуру Т1). Точка пересечения изобары р1 = const с изохорой v1 = const соответствует началу процесса - 1, а точка пересечения изобары р1 = const с изохорой v2 = const - концу процесса - 2. Координаты точек 1 и 2 суть s1, h1; s2, h2. Через точку 2 проходит изотерма Т2 = const, так определяем Т2. Через точку 1 проходит также линия равной сухости x1 = const.
Далее вычисляем: u1 = h1 - p1v1, u2 = h2 - p2 · v2, l1-2 = p1·(v2 - v1).
Исходя из уравнения первого закона термодинамики следует
δq = dh – v · dp (при dp = 0) δq = dh q1-2 = h2 - h1. (2.13)
Задача решена.
3. Изотермический процесс. Т = const, dT = 0, приведен на рис. 2.6.
Исследуем процесс 1-2.
Дано: Т1, v1, v2, (Т2 = Т1).
Необходимо найти: х1, р1, р2, s1, s2, h1, h2, u1, u2, l1-2, q1-2.
Рис. 2.6
Решение
Предполагается, что начало процесса в двухфазной зоне. Для решения задачи опять используем hs – диаграмму (см. рис. 2.6,в).
На hs - диаграмме находим изохоры v1 = const, v2 = const и изотерму Т1 = const. Точка пересечения этой изотермы с изохорой v1 = const соответствует началу процесса 1, через которую проходят также линия равной сухости х1 = const и изобара р1 = const, что позволяет определить значения х1 и р1. Координатами точки 1 являются s1 и h1. Точка пересечения изотермы Т1 = const с изохорой v2 = const соответствует концу процесса - 2, координаты которой s2 и h2. Через эту точку также проходит изобара р2 = const, таким образом, определяется р2.
Далее находим:
u1 = h1 - p1 · v1, u2 = h2 - p2 · v2, q1-2 = T1·(s2 - s1). (2.14)
В соответствии с первым законом термодинамики, вычисляем работу:
dl = δq – du l1-2 = T1·(s2 - s1) - (u2 - u1). (2.15)
Задача решена.
4. Адиабатный процесс. δq = 0, ds = 0, приведен на рис. 2.7.
Исследуем процесс 1-2.
Дано: р1, v1, v2.
Необходимо найти: Т1, Т2, р2 , h1, h2 , s1 , s2 , l1-2 , q1-2 ,x2 .
Рис. 2.7
Решение
Предполагается, что начало процесса расположено в зоне перегретого пара, а конец - в зоне влажного пара. Опять обращаемся к hs – диаграмме (см. рис. 2.7,б).
На диаграмме находим изохоры v1 = const, v2 = const и изобару р1 = const. Точка пересечения изохоры v1 = const с изобарой р1 = const соответствует началу процесса 1, координаты которой s1 и h1. Из точки 1 восстанавливаем адиабату (вертикальную линию) до пересечения с изохорой v2 = const Точка их пересечения соответствует концу процесса 2, координаты которой s2 = s1 и h2. Через эту точку проходит изобара р2 = const, которая позволяет определить р2, а также линия равной сухости x2 = const.
Далее находим:
u1 = h1 - p1 · v1, u2 = h2 - p2 · v2; (2.16)
δq = T1 · ds = 0, так как s2 = s1, то (ds = 0), следовательно, q1-2 = 0.
dl = δq - du → dl = -du → l1-2 = -(u2 - u1). (2.17)
При этом р и Т уменьшаются, а v – удельный объем увеличивается. При переходе через х = 1, показатель изменяется «Скачком», т.е. в зоне перегретого k = 1,3, для сухого k = 1,135 и в зоне влажного k = 1,035 + 0,1Х.
Задача решена.