Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Техническая термодинамика опрн. консп..doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
7 Mб
Скачать

Обратимые равновесные процессы в идеальных газах

Для вывода универсальной зависимости, связывающей параметры состояния в термодинамических процессах, воспользуемся следующими уравнениями (1.27, 1.28) первого закона термодинамики и с учетом выражений (1.1, 1.9, 1.29, 1.30) напишем их в виде:

c×dT=cv× dT + p×dv, (а) (1.31)

c× dT=cp× dT - v×dp. (б) (1.32)

Разделив уравнение (б) на уравнение (а), найдем

. (1.33)

Введем обозначение . После интегрирования (1.33) и ряда несложных алгебраических преобразований, получаем

p·vn=const. (1.34)

Последнее уравнение является уравнением политропного процесса, где n- называется показателем политропы, который меняется в пределах -¥ < n < ¥. Политропным называется процесс, в котором происходит изменение всех термодинамических функций состояния, за исключением удельной теплоемкости, которая остается постоянной величиной в течение данного процесса.

Решая зависимость относительно с, находим выражение для удельной теплоемкости политропного процесса

, (1.35)

- показатель адиабаты.

Из выражения (1.35) следует, что теплоемкость ТДС (рабочего тела) зависит от характера протекающего термодинамического процесса (на что указывает показатель политропы n) и от физических свойств рабочего тела через коэффициент показателя адиабаты k)

Рассматривая формулу (1.34) совместно с уравнением состояния p×v=Rг×T, можно представить ее еще в следующих эквивалентных формах:

T× vn-1=const; Tn× p1-n =const. (1.36)

Изопараметрические процессы

Большое значение для теоретических исследований и решения практических задач имеют так называемые изопараметрические процессы, протекающие при постоянном (фиксированном) значении одного из параметров состояния и адиабатный процесс, который протекает без теплообмена с окружающей средой.

Термодинамические процессы удобно иллюстрировать в виде соответствующих линий (кривых) процесса на двумерных фазовых диаграммах. Широкое распространение имеют pv-, Ts-, hs-диаграммы, которые условно показаны на рис. 1.2.

В общем случае расчет любого термодинамического процесса 1-2 при заданных начальных параметрах (p1, v1, T1) должен сводиться к определению конечных параметров (p2, v2, T2) состояний газа (рабочего тела) и вычислению участвующей в процессе теплоты q1-2, изменению внутренней энергии Δu=u2-u1, энтальпие Δh=h2-h1, энтропие Δs=s2-s1 и работе деформации объема рабочего тела l1-2. Таким образом, рассматриваемый процесс однозначно характеризуется значениями следующих функций процесса, параметров состояния и функций состояния:

(p1, v1, T1, p2, v2, T2, Δu, Δh, Δs, q1-2, l1-2). (1.37)

Очевидно, что перечисленный спектр величин должен быть дополнен сведениями о физической природе рабочего тела (cp, cv, μг и т.д.).

Следует отметить, что на pv-диаграмме линии процесса описываются уравнением p·vn=const. (Каждому термодинамическому процессу соответствует свое значение показателя политропы n).

Определим уравнение, описывающее линии процесса на Ts-диаграмме.

Для этого рассмотрим совместно следующие выражения (1.9) и (1.2):

δqdT,

δq=Tds.

Учитывая равенство левых частей этих выражений, приравниваем их правые части:

сdT= Tds.

В полученном дифференциальном уравнении производим разделение переменных и осуществляем интегрирование

dT/T=ds/c , (1.38)

где T1, s1 – соответствуют началу процесса; с – теплоемкость рассматриваемого процесса.

Ниже приведены математические зависимости и фазовые диаграммы, необходимые для анализа и осуществления соответствующих расчетов при исследовании конкретных изопараметрических процессов.

При анализе каждого из изопараметрических процессов необходимо определить значения показателя политропы, теплоемкости процесса и изменения функций состояния, а также величину теплоты, принимающей участие в данном процессе и работу расширения, совершаемый ТДС при протекании рассматриваемого процесса.

I. Изохорный процесс v=const, dv=0.

В уравнении линии процесса p×vn=const, (p1/n v=const) условие v=const удовлетворяется при n=¥, а теплоемкость изохорного процесса в соответствии с выражением равна .

Из уравнения состояния идеального газа p×v=Rг×T (при условии v=const) следует

const .

Перечень величин, представленных в выражении (1.37) в изохорном процессе, взаимосвязан следующими соотношениями:

p1×T2 = p2 ×T1; (1.39)

l1-2= 0, v1= v2; (1.40)

q1-2= u2 - u1; (1.41)

Δu=u2 - u1= cv× (T2 -T1); (1.42)

Δh=h2 - h1=cp× (T2 -T1); (1.43)

; (1.44)

. (1.45)

II. Изобарный процесс p=const, dp=0

В уравнении политропного процесса p×vn=const, условие р = const удовлетворяется при n = 0; теплоемкость равна .

Из уравнения состояния p×v=Rг×T (при условии p=const) следует const, .

Соотношения между величинами, представленными в перечне (1.37), определяются путем интегрирования соответствующих выражений, как это производилось при рассмотрении изохорного процесса и имеют окончательный вид:

v1×T2= v2× T1; (1.46)

q1-2= h2 - h1; (1.47)

l1-2= p1× (v2 - v1) = p2× (v2 - v1); (1.48)

Δu=u2 - u1= cv× (T2 -T1); (1.49)

Δh=h2 - h1=cp× (T2 -T1); (1.50)

. (1.51)

III. Изотермический процесс Т=const, dТ=0.

В уравнении политропного процесса T×vn-1=const, условие Т=const удовлетворяется при n = 1, а теплоемкость для этого случая определяется из выражения .

Из уравнения состояния p×v=Rг×T (при условии T=const) следует p×v=Rг×T = const, pv = p1 v1 = p2 v2Þ p1 v1= p2 v2.

Перечень величин (1.37) в изотермическом процессе взаимосвязан следующими соотношениями:

p1× v1 = p2×v2; (1.52)

; (1.53)

q1-2= l1-2; (1.54)

Δu=u2 - u1= 0; (1.55)

Δh=h2 - h1=0; (1.56)

; (1.57)

T2=T1. (1.58)