
- •140101.65 – Тепловые электрические станции
- •140104.65 – Промышленная теплоэнергетика
- •140100.65 – Теплоэнергетика
- •1. Информация о дисциплине «техническая термодинамика»
- •1.1. Предисловие
- •1.2. Содержание дисциплины и виды учебной работы
- •1.2.1. Содержание дисциплины по гос
- •1.2.2. Объем дисциплины и виды учебной работы
- •1.2.3. Перечень видов практических занятий
- •Раздел 1. Основные законы
- •1.2. Первый закон термодинамики
- •1.3. Второй закон термодинамики
- •Раздел 2. Реальные газы. Водяной пар (40 часов)
- •2.1.Свойства и фазовые переходы
- •Реальных газов
- •2.2. Характеристики и процессы водяного пара
- •2.3. Влажный воздух
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •Раздел 3.Компрессоры.
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.3. Циклы газотурбинных установок (гту)
- •Раздел 4. Циклы паротурбиннных
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •4.3. Циклы парогазовой и атомной установок
- •Раздел 5. Циклы холодильных и теплонасосных
- •Раздел 6. Элементы химической термодинамики
- •6.2. Уравнение максимальной работы химической рекции
- •Заключение
- •2.2. Тематический план дисциплины
- •2.2.1. Тематический план дисциплины
- •2.2.2. Тематический план дисциплины для студентов заочной формы обучения
- •Техническая термодинамика
- •Раздел 1.
- •Основные законы термодинамики
- •Раздел 2.
- •Реальные
- •Водяной пар
- •Раздел 3.
- •Компрессоры.
- •Циклы тепловых двигателей
- •Раздел 4.
- •Циклы паротурбинных установок
- •Раздел 5.
- •Циклы холодильных и теплонасосных установок
- •Раздел 6.
- •Элементы химической термодинамики
- •2.4. Временной график изучения дисциплины
- •2.5. Практический блок
- •2.5.1. Практические занятия
- •2.5.1.1. Практические занятия (очно – заочная форма обучения)
- •2.5.1.2. Практические занятия (заочная форма обучения)
- •2.5.2. Лабораторный практикум
- •2.5.2.1. Лабораторные работы (очно – заочная форма обучения)
- •2.5.2.2. Лабораторные работы (заочная форма обучения)
- •2.6. Рейтинговая система по дисциплине «Техническая термодинамика»
- •3.Информационные ресурсы дисциплины
- •3.1. Библиографический список
- •3.2. Опорный конспект лекций по дисциплине «техническая термодинамика» Введение
- •Раздел 1. Основные законы термодинамики
- •1.1. Термодинамика идеального газа
- •Основные понятия и определения термодинамики.
- •1.1.1. Законы идеального газа
- •1.1.2. Уравнение состояния
- •Теплоемкость
- •Последнюю формулу еще можно представить в виде
- •Смеси идеальных газов
- •Вопросы для самопроверки
- •1.2. Первый закон термодинамики
- •Обратимые равновесные процессы в идеальных газах
- •Разделив уравнение (б) на уравнение (а), найдем
- •Изопараметрические процессы
- •IV. Адиабатный процесс
- •V. Политропные процессы
- •Вопросы для самопроверки
- •1.3. Второй закон термодинамики
- •1.3.1. Круговые процессы
- •1.3.2. Прямой цикл Карно
- •1.3.3. Обратный цикл Карно
- •1.3.4. Второй закон термодинамики
- •1.3.5. Эксергетический метод исследования
- •1.3.6. Эксергия неподвижного рабочего тела
- •1.3.7. Эксергия потока рабочего тела
- •1.3.8. Эксергия потока теплоты
- •Вопросы для самопроверки
- •Раздел 2. Реальные газы. Водяной пар
- •2.1. Свойства и фазовые переходы реальных газов
- •2.1.1. Реальные газы и их свойства
- •Критические параметры некоторых веществ
- •2.1.2. Условия равновесия при фазовом переходе
- •2.1.3. Термические и калорические свойства реальных газов
- •Вопросы для самопроверки
- •2.2. Характеристики и процессы водяного пара
- •2.2.1. Водяной пар и основные процессы водяного пара
- •Испарение - процесс образования пара, происходящий с поверхности жидкости при любой температуре.
- •2.2.2. Изопараметрические процессы изменения состояния водяного пара в pv -, Ts - и hs - диаграммах
- •Вопросы для самопроверки
- •2.3. Влажный воздух
- •2.3.1. Свойства влажного воздуха
- •2.3.2. Теплоёмкость и энтальпия влажного воздуха
- •Вопросы для самопроверки
- •2.4. Термодинамика газового потока. Истечение газов через сопло
- •2.4.1. Термодинамика газового потока
- •Замена переменных приводит уравнение к виду
- •2.4.2. Термодинамика потока в каналах переменного сечения
- •2.4.3. Истечение газов через сужающиеся сопла (конфузоры)
- •Вопросы для самопроверки
- •2.4.4. Истечение газа с учетом трения
- •2.4.5. Истечение водяного пара
- •2.5. Расчет процессов дросселирования
- •2.5.1. Уравнение процесса дросселирования
- •Вопросы для самопроверки
- •Раздел 3. Компрессоры. Циклы тепловых двигателей
- •3.1. Виды компрессоров и процессы в компрессоре
- •3.1.1. Назначение и типы компрессоров
- •3.1.2. Многоступенчатое сжатие
- •3.1.3. Мощность привода идеального компрессора и коэффициенты полезного действия (кпд)
- •Вопросы для самопроверки
- •3.2. Циклы двигателей внутреннего сгорания (двс)
- •3.2.1. Циклы поршневых двигателей внутреннего сгорания (двс)
- •Цикл Oтто
- •Цикл Дизеля
- •Цикл Тринклера
- •3.3. Циклы газотурбинных установок (гту)
- •3.3.1. Принципиальная схема и цикл гту с изобарным подводом теплоты
- •3.3.3. Регенерация теплоты в цикле гту. Многоступенчатое сжатие в компрессоре и ступенчатый подвод теплоты
- •Вопросы для самопроверки
- •3.4. Циклы реактивных двигателей
- •И турбореактивного двигателей
- •Вопросы для самопроверки
- •Раздел 4. Циклы паротурбинных установок (пту)
- •4.1. Идеальный и действительный циклы пту
- •4.1.1. Идеальный цикл Ренкина
- •4.1.2. Цикл Ренкина на сухом насыщенном и перегретом паре
- •Следовательно, полезная работа цикла Ренкина равна
- •Термический кпд цикла Ренкина
- •Введем понятие относительного эффективного кпд
- •Далее введем относительный электрический кпд
- •Тогда расход пара на турбину можно выразить в виде
- •Тогда кпд всей пту определится произведением
- •Вопросы для самопроверки
- •4.2. Циклы пту с промежуточным перегревом и регенеративным отбором пара
- •Выражение для термического кпд основного (без промежуточного перегрева) цикла Ренкина:
- •Регенеративный цикл паротурбинных установок
- •Вопросы для самопроверки
- •4.3. Циклы парогазовой и атомной установок
- •4.3.1. Циклы парогазовых установок
- •4.3.2. Схема и цикл атомной теплоэнергетической установки
- •Вопросы для самопроверки
- •4.4. Циклы и устройства прямого преобразования теплоты в электроэнергию
- •4.4.1. Циклы установок с магнитогидродинамическим генератором (мгд-генератор)
- •4.4.2. Термодинамические и термоэлектронные преобразователи
- •Вопросы для самопроверки
- •Раздел 5. Циклы холодильных и теплонасосных установок
- •5.1. Циклы воздушной и парокомпрессорной холодильных установок
- •5.1.1. Циклы холодильных установок
- •5.1.2. Цикл воздушной холодильной установки
- •5.1.3. Цикл парокомпрессионной холодильной установки
- •5.1.4. Абсорбционная холодильная установка
- •Вопросы для самопроверки
- •5.2. Передача теплоты тепловым насосом и тепловой трубой
- •5.2.1. Тепловой насос
- •5.2.2. Передача теплоты тепловыми трубами
- •Вопросы для самопроверки
- •Раздел 6. Элементы химической термодинамики
- •6.1. Законы термодинамики в термохимии
- •6.1.1. Основные понятия химической термодинамики
- •6.1.2. Тепловой эффект химической реакции
- •6.1.3. Зависимость теплоты реакции от температуры
- •6.1.4. Химическое равновесие
- •Основные определения
- •Константа химического равновесия
- •Химические константы I и условные химические константы j
- •6.1.5. Диссоциация
- •Вопросы для самопроверки
- •6.2. Уравнение максимальной работы химической реакции
- •6.2.1. Химическое сродство. Мера химического сродства
- •Вопросы для самопроверки
- •Глоссарий (словарь терминов)
- •Охрана труда и техника безопасности при проведении лабораторных работ
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •4. Содержание отчета
- •3. Экспериментальная установка и методика опыта
- •Обработка результатов опыта
- •4. Содержание отчета
- •4. Блок контроля освоения дисциплины
- •4.1. Задания на контрольные работы
- •Контрольная работа 1
- •Контрольная работа 2
- •Контрольная работа 3
- •4.2. Методические указания к выполнению контрольных заданий и практических работ
- •Искомая мощность привода компрессора
- •4.3. Тренировочные и контрольные тесты
- •Вопрос 1. Выберите определение понятия «прямой цикл».
- •Вопрос 2. Как зависит холодильный коэффициент идеальной воздушной холодильной установки от степени повышения давления в компрессоре р2/р1?
- •Вопрос 4. Выберите наиболее полное определение понятия «идеальный газ».
- •4.4. Итоговый контроль. Вопросы для подготовки к экзамену
- •Приложение п.1. Теплофизические свойства сухого воздуха при нормальном атмосферном давлении
- •П.3. Средняя массовая теплоемкость газов при постоянном давлении, [4]
- •П.4. Средняя объемная теплоемкость газов при постоянном давлении,
- •П.5. Относительные молекулярные массы, плотности и объемы киломолей при нормальных условиях, критические температуры и критические давления некоторых газов
- •П.6. Энтальпия 1 м3 газов и влажного воздуха (кДж/м3)
- •П.7. Диаграмма h-s водяного пара
- •П.8. Насыщенный водяной пар (по давлениям)
Раздел 1. Основные законы термодинамики
Раздел содержит три темы, три лабораторные и одну контрольную работы (задачи № 1,2,3,4), вопросы для самопроверки и контрольный тест из десяти вопросов (№ 1). Максимально возможное число баллов по этому разделу составит 55 баллов для очно-заочной и заочной формам обучения.
1.1. Термодинамика идеального газа
Уравнение состояния идеального газа. Универсальная газовая постоянная. Удельная газовая постоянная. Нормальные физические условия. Молекулярно – кинетическая теория теплоемкости. Элементы квантовой теории теплоемкости. Истинная и средняя теплоемкости. Свойства теплоемкостей идеального газа. Связь между изохорной и изобарной теплоемкостями идеального газа (закон Майера). Эмпирические формулы для теплоемкостей идеального газа. Таблицы значений истинной и средней теплоемкостей идеального газа.
Cмеси идеальных газов. Закон Дальтона. Теплоемкость газовых смесей.
По теме выполняются практические занятия (№ 1), две лабораторные работы (№ 1,2), контрольная работа (задачи № 1,2,3). После изучения теоретического материала следует ответить на вопросы для самопроверки по этой теме. Ответы можно найти в учебниках [1,3].
Основные понятия и определения термодинамики.
Прежде чем приступить к подробному изучению курса технической термодинамики следует ознакомиться с основными понятиями и определениями данной дисциплины.
1.
Термодинамической системой (ТДС)
называется совокупность тел, выделенная
из окружающей среды (ОС) воображаемой
или реальной поверхностью, через которую
между ТДС и ОС может осуществляться
обмен энергией
и веществом
.
Известны три категории ТДС:
а)
при условиях
,
- ТДС называется открытой;
б)
при
,
- ТДС – закрытая;
в)
при
,
-
ТДС изолирования.
2. В термодинамике простейшую ТДС называют рабочим телом (РТ). Рабочее тело является необходимым посредником, способным воспринимать теплоту (холод) и совершать работу. В свою очередь РТ делится на две категории:
а) Идеальный газ – это материя, объемами микрочастиц которой и их взаимодействием между собой можно пренебречь (примеры: низкомолекулярные газы – водород, кислород, воздух, перегретый водяной пар и др.).
б) Реальные газы – это материя, микрочастицы которой обладают конечными объемами и между собой дистанционно взаимодействуют (пример – высокомолекулярные углеводороды и др.).
3. Термодинамическое состояние ТДС, которое характеризуется всеми свойствами системы. Вообще состояние ТДС определяется ограниченным числом величин, называемых параметрами состояния. В газах и жидкостях при отсутствии химических реакций параметрами состояния являются:
температура
– Т,
К; давление – р,
Па; удельный объем – v,
.
Температура – это мера интенсивности беспорядочного теплового движения молекул. Абсолютная температура Т связана со средней скоростью молекул w соотношением
,
где k = 1,381·10-23 – постоянная Больцмана, m – масса молекулы. Единица измерения абсолютной температуры – Кельвин (К). Ноль шкалы Кельвина соответствует полному покою молекул. Практически широко применяется шкала Цельсия. Градус Цельсия равен градусу Кельвина; 0°С соответствует 273,15 К.
Давление
p
– это сила, действующая со стороны газа
или жидкости на единицу площади стенки
по нормали к ней. Давление измеряется
в паскалях Па, 1 Па = 1
.
1 килопаскаль равен 103
Па, 1 мегапаскаль – это 106
Па. Среднее атмосферное давление
р0=1,013·105
Па≈0,1 МПа. Устаревшая единица давления
– техническая атмосфера (ат). 1 ат =
0,98·105
Па≈0,1 МПа. Параметром состояния является
полное (абсолютное) давление. Манометром
измеряется давление, избыточное над
атмосферным, ризб
= р – р0.
Удельный
объем v
– это объем единицы массы рабочего тела
(вещества). Если объем газа V
и масса m,
то v=
,
.
Удельный объем связан с плотностью газа
соотношением v
=
.
Нормальные термодинамические параметры воздуха:
Т0 = 273,15 К; р0 = 101,3·103 кПа; v0 = 0,770 .
4. Под термодинамическим процессом понимается совокупность последовательных состояний, через которую проходит ТДС при её взаимодействии с окружающей средой. Состояние ТДС может быть равновесным и неравновесным. Равновесным называется такое состояние ТДС, при котором во всех точках её объема все параметры состояния и физические свойства одинаковы. В противном случае ТДС называют неравновесным.
Все процессы, проходящие в ТДС, подразделяются на равновесные и неравновесные. Равновесными называются такие процессы, когда ТДС в ходе процесса проходит ряд последовательных равновесных состояний. Эти процессы протекают настолько медленно, что в каждый момент времени устанавливается равновесие.
Неравновесными называются такие процессы, при протекании которых ТДС не находится в состоянии равновесия.
Наряду с понятиями равновесности и неравновесности в термодинамике используют понятия обратимости и необратимости. Обратимость процесса состоит в том, что он может протекать и в прямом (например, расширение) и обратном (сжатие) направлениях так, что при этом и окружающая среда и ТДС проходят одни и те же состояния. Обратимый процесс в обратном направлении восстанавливает первоначальное состояние ТДС и ОС.
Необратимый процесс в прямом направлении проходит через одни состояния, в обратном – через другие, и в обратном направлении не восстанавливает первоначальное состояние ТДС и ОС. Чем медленнее развиваются процессы, тем меньше влияние необратимости. Процесс может быть обратимым при условии, если его время осуществления стремится к бесконечности.
Все реальные процессы, протекающие в природе, являются неравновесными. По этой причине эти процессы лишь с той или иной степенью точности могут описываться закономерностями, справедливыми для равновесных процессов.
В термодинамике в первую очередь рассматриваются равновесные процессы и равновесные состояния, которые могут быть количественно описаны соответствующими уравнениями термодинамики.
5. Внутренняя энергия U – это энергия, заключенная в рассматриваемой ТДС, которая представляет собой сумму кинетической энергии хаотичного движения микрочастиц системы. Внутренняя энергия является функцией параметров состояния, т.е. её изменение не зависит от формы пути процесса, а определяется лишь её значениями в конечном и начальном состояниях, т.е.
.
Обозначив массу рассматриваемой ТДС через m (кг) и поделив внутреннюю энергию системы U на её массу, можно получить выражение для энергии, приходящейся на единицу массы, которая называется удельной внутренней энергией
.
6. Теплота и работа. Обмен энергией между ТДС и ОС может осуществляться в двух различных формах – в форме теплоты и в форме механической работы.
Теплота представляет собой микроскопическую форму обмена энергией между ТДС и ОС. В этом случае обмен происходит без изменения формы и объема ТДС, при этом меняются лишь значения давления и температуры в системе. Пример – подвод теплоты извне (например – пламенем паяльной лампы) в газ, находящийся в замкнутой металлической емкости. В этом случае по мере подвода теплоты наблюдается рост температуры и давление газа, следовательно, происходит увеличение внутренней энергии газа U при неизменном объеме. Таким образом, в данном примере осуществляется обмен энергией между окружающей средой (паяльной лампой) и газом, находящимся внутри емкости.
Механическая
работа –
это макроскопическая форма обмена
энергией между ТДС и ОС. В этом процессе
происходит изменение значений всех
параметров состояния. В результате
изменения (расширения) объема ТДС
совершается механическая работа по
преодолению сопротивления окружающей
среды. Из механики известно, что работа
равна произведению силы на пройденный
путь в направлении действия данной
силы. Величина этой работы пропорциональна
давлению газа р и приращению объема
при
расширении. Пример – нагрев извне газа
(например, пламенем той же паяльной
лампы), находящегося в вертикальном
цилиндре с подвижным поршнем. В этом
случае подвод теплоты из ОС обусловливает
рост температуры и давления газа внутри
емкости (в ТДС), что сопровождается
подъемом поршня вверх в результате
расширения газа. При этом совершается
механическая работа по преодолению
силы тяжести поршня. Обозначив эту
работу через
,
её можно выразить в виде следующей
зависимости
=
F·h,
где F=p·f
- сила давления газа на поршень,
f
- площадь поперечного сечения
поршня,
h-высота
подъема поршня в результате расширения
газа. Учитывая, что f·h=V
- приращение объема газа внутри цилиндра,
выражение для работы можно представить
в виде
.
Производя предельный переход в последнем выражении, его можно представить в дифференциальной форме
.
Это уравнение выражает элементарную термодинамическую работу расширения ТДС. Соответствующую удельную работу, т.е. отнесенную к 1 кг газа, можно представить уравнением
.
(1.1)
7. Функцией состояния ТДС называется такая физическая характеристика системы, изменение которой при переходе системы из одного состояния в другое не зависит от вида соответствующего этому переходу термодинамического процесса и определяется значениями параметров начального и конечного состояния.
(Как
было отмечено выше, теплота Q
и работа L
представляют собой различные формы
обмена внутренней энергией между ТДС
и ОС. Для этих двух функций их бесконечно
малое приращение в термодинамике принято
обозначать оператором «
»,
в отличие от дифференциала функций
состояния, которые обозначаются
оператором «d»).
Функциями состояния являются, прежде всего, известные нам параметры состояния р, v, T и внутренняя энергия U. Рассмотрим еще несколько функций состояния, имеющих широкое распространение.
8. Энтальпия. Наряду с внутренней энергией U в термодинамике важную роль играет величина, называемая энтальпией
.
где первое слагаемое в правой части, как известно, представляет сумму кинетической энергии микрочастиц системы, второе слагаемое – потенциальную энергию взаимодействия микрочастиц системы, следовательно, левая часть составляет полную энергию.
Удельная
энтальпия h
=
выражается зависимостью:
.
9.
Энтропией
называется функция состояния S,
дифференциал которой для элементарного
термодинамического процесса равен
отношению бесконечно малого количества
теплоты
сообщаемого системе, к абсолютной
температуре последней
.
Энтропия может быть определена только с точностью до аддитивной произвольной постоянной
,
S0 –константа интегрирования.
Удельная
энтропия
- имеет размерность (
).
Выразим основное соотношение, используя
понятие удельной энтропии:
или
.
(1.2)
Введение данной функции состояния значительно облегчает анализ термодинамических процессов. Физическая сущность энтропии – есть мера необратимого рассеяния энергии.