
- •Часть 1 – «Общие сведения о системах электросвязи »
- •1 Введение. Системы, каналы и сети связи.
- •1.1 Информация, сообщения, сигналы.
- •1.2 Роль и место электросвязи на железнодорожном транспорте.
- •1.3 Система связи.
- •§5. Непрерывные и дискретные сигналы. Теорема Котельникова.
- •§6. Модуляция.
- •Понятие несущего колебания.
- •§7. Дискретная модуляция.
- •§8. Амплитудная модулляция.
- •§9.Относительная амплитудная модуляция.
- •Амплитудная модуляция при сложном модулирующем сигнале.
- •Амплитудно-модулированные сигналы.
- •§9. Угловая модуляция.
- •§10. Классификация цепей
- •§11. Линейные цепи с постоянными параметрами.
- •Линейные цепи с переменными параметрами
- •§12. Нелинейные цепи.
- •§13. Получение модулированных радиосигналов.
- •§1.Преобразование частоты.
- •Умножения частоты.
- •Детектирование ам – колебаний.
- •Помехи радиоприему
- •Фазовое детектирование.
- •Дискретный источник сообщений.
- •Модели источников.
- •§ Избыточность.
- •§ Помехоустойчивые коды.
- •§ Блочные систематические коды.
- •Электрические фильтры.
- •§ Цифровой фильтр.
- •§ Генерирование гармонических колебаний. Автоколебательная система.
- •Возникновения колебания в автогенераторе.
- •Самовозбуждение простейшего автогенератора.
- •§ Сравнение методов цифровой модуляции
- •Мягкий и жесткий режимы самовозбуждения.
- •Назначения, классификация и принципы построения систем синхронизации.
- •Детерминированные сигналы и их характеристики.
- •Кодирование сигналов.
- •§ Отношение сигнал/шум.
- •Коэффициент шума.
§11. Линейные цепи с постоянными параметрами.
1.Цепь является линейной, если входящие в нее элементы не зависят от внешней силы (напряжения, тока), действующей на цепь.
2.Линейная цепь подчиняется принципу суперпозиции (наложения).
(10.1)
где
-
произвольное число.
Суть принципа суперпозиции: при действии на линейную цепь нескольких внешних сил поведение цепи (ток, напряжение) можно определить путем наложения (суперпозиции) решений, найденных для каждой из сил в отдельности.
3.При сколь угодно сложном воздействий в линейной цепи с постоянными параметрами не возникает колебаний новых частот. ни одно из преобразовании сигналов, сопровождающихся появлением новых частот (т.е. частот, отсутствующих в спектре входного сигнала) не может в принципе быть осуществлено с помощью линейной цепи с постоянными параметрами. Это вытекает из того факта, что при гармоническом воздействии на линейную цепь с постоянными параметрами колебания на выходе также остается гармоническим с той же частотой, что и на входе, изменяются лишь амплитуда и фаза колебания. Такие цепи находят широчайшее применение для решения задач, не связанных с трансформацией спектра, таких как линейное усиление сигналов, фильтрация (по частотному признаку) и т.д.
Линейные цепи с переменными параметрами
Одно или несколько параметров изменяются во времени (но не зависят от сигнала). Подобные цепи часто называются линейными параметрическими, свойства 1 и 2 (для линейных цепей с постоянными параметрами) справедливы и для линейных параметрических цепей. Однако в отличие от предыдущего случая даже простейшее гармоническое воздействие создает в линейной цепи с переменными параметрами сложное колебание, имеющие спектр частот.
Пример: пусть к резистору, сопротивление которого изменится во времени по закону R(t)=R0/(1+m cos t) приложена гармоническая ЭДС е(t)=E0cos t).
ток через сопротивление
В составе тока
имеются компоненты с частотами
,
которых нет e(t).
Аналогичный результат, хотя и с более
сложными математическими выкладками,
можно получить для цепи с переменными
параметрами, содержащей реактивные
элементы - катушки индуктивности и
конденсаторы. Линейная цепь с переменными
параметрами преобразует частотный
спектр воздействия и, следовательно,
может быть использовано для некоторых
преобразований сигналов, сопровождающихся
трансформацией спектра.
§12. Нелинейные цепи.
Если условия (10.1) не выполняется, то говорят, что система является нелинейной.
Радиотехническая цепь является нелинейной, если в ее состав входят один или несколько элементов, параметры которых зависят от уровня входного сигнала.
Все физические системы, с которыми имеет дело радиотехника, в той или иной степени нелинейные.
Нелинейные радиотехнические устройства содержать в себе обычно такие элементы, как полупроводниковые диоды и транзисторы, имеющие ВАХ сложного вида.
Основные свойства нелинейных систем.
К нелинейным цепям принцип суперпозиции неприемлем. Это свойство нелинейных цепей тесно связано с кривизной вольт – амперных (или иных аналогичных) характеристик нелинейных элементов, нарушающей пропорциональность между током и напряжением. Например, для диода если напряжению U, соответствует ток i1, а напряжению U2 – ток i2, то суммарному напряжению U3= U1+ U2 будет соответствовать току i3 отличный от суммы i1+ i2.
При анализе воздействия сложного сигнала на линейную цепь его нельзя разлагать на более простые, необходимо искать облик цепи на результирующий сигнал. Достоинством линейной цепи является, то что по крайней мере теоретически можно решить любую задачу о преобразовании входного сигнала такой системы.
Недостаток линейной цепи: сложность. Далеко не все результаты могут быть получены аналитическим путем. Непременность для нелинейных цепей принципа суперпозиции делает непригодными спектральных и иные методы анализа, основные на разложении сложного сигнала на составляющие. Однако именно с помощью нелинейных элементов осуществляются важнейшие преобразования радиотехнических синапов.
Важным свойством нелинейной цепи является преобразование спектра сигнала. При воздействии на нелинейную цепь простейшего гармонического сигнала в цепи помимо колебаний основной частоты возникают гармоники с частотами, кратными основной частоте. При сложной форме сигнала в нелинейной цепи помимо гармоник возникают еще и колебания с комбинационными частотами, являющиеся результатами взаимодействия отдельных колебаний, входящих в состав сигнала.