
- •Предмет и задачи биофизики. История развития биофизики. Разделы биофизики.
- •Особенности кинетики биологических процессов. Параметры и переменные. Влияние концентраций на скорость реакций. Понятие «узкого места».
- •Механизмы первичных реакций в организме при размене физической энергии на химическую (теория мишени, теория непрямого действия, теория цепных процессов).
- •Влияние температуры на скорость реакций в биологических системах.
- •Перекисное окисление липидов в мембранах. Биологические последствия пероксидации липидов.
- •Кинетика ферментативных реакций (уравнения Михаэлиса-Ментен).
- •Чувствительность различных биологических объектов к радиации. Действие ионизирующего облучения на живые системы.
- •Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
- •Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
- •Раздел III. Пространственная организация биополимеров
- •Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
- •§1. Статистический характер организации полимеров
- •Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
- •Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
- •Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
- •Транспорт электролитов (ионное равновесие на границе мембрана-раствор, равновесие Доннана).
- •Второй закон термодинамики. Понятие градиента. Энтропия, свободная и связанная энергия.
- •Пространственная конформация биополимеров (стереоспецифичность аминокислот, первичная, вторичная, третичная, четверичная структура белка).
- •Вида ионизирующих излучений. Единицы измерения дозы ионизирующего излучения.
- •Изменение энтропии в открытых системах. Стационарные состояния и состояния термодинамического равновесия. Принцип Ле-Шателье.
- •Механно-химические процессы в полимерах.
- •Активный транспорт (участие атф-аз вм активном транспорте ионов через биологические мембраны).
- •Переносчики и каналы.
- •Устойчивость и неустойчивость стационарного состояния (на примере гидродинамической модели).
- •1. Кинетические уравнения Лотки (a.J. Lotka. Elements of Physical Biology, 1925)
- •2. Модель Вольтерра
- •(По к. Вилли, в. Детье, 1974)
- •Активный транспорт (электрогенный транспорт ионов – опыт Уссинга и ).
- •Понятие обобщенных сил и потоков. Соотношение взаимности Онзагера. Теорема Пригожина.
- •Простая и облегченная диффузия.
- •Кооперативные свойства макромолекул (механизм кооперативного связывания кислорода гемоглобином и миоглобином).
- •Потенциал покоя и его происхождение.
- •[Править]История открытия
- •[Править]Общие положения
- •[Править]Формирование потенциала покоя
- •Поверхностный заряд мембранных систем (происхождение дзета-потенциалов – представление Гельмгольца, Гуи, Штерна; определение дзета-потенциалов).
- •Состояние воды и гидрофобные взаимодействия.
- •Потенциал действия (изменение электропроводной мембраны, потоки ионов натрия и калия, схема функционирования натриевого канала при возбуждении). Распространение возбуждения.
- •Роль гидрофобных взаимодействий в формировании структуры белков. Переход спираль-клубок. Переход глобула-клубок.
- •Переход клубок—глобула
- •Транспорт неэлектролитов (проницаемость мембран для воды, роль коллоидно-осмотического давления плазмы в переносе воды).
- •Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
- •Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
- •Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
- •5. Живая ткань как проводник переменного электрического тока. Дисперсия
- •Химия и физика мышцы (схема взаимодействия актина с миозином по Хаксли, кривая зависимости скорости изотонического сокращения от величины нагрузки по Хиллу).
- •Структура биомембран: развитие представление о структуре, модельные мембранные системы.
- •Ковалентные и слабые связи.
- •21. Слабые связи.
- •Динамические модели биологических систем. Понятие фазовой плоскости. Фазовой портрет системы.
- •12. Понятие фазовой плоскости. Фазовый портрет системы.
- •Свободные радикалы. Методы изучения. Классификация свободных радикалов.
- •Классификация свободных радикалов, образующихся в нашем организме
- •Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима q). Первичные радикалы
- •Активные формы кислорода
- •Окись азота
- •Радикал коэнзима q
- •Клеточные системы антирадикальной защиты.
- •Динамика мембран. Фазовые переходы в липидном бислое.
- •Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).
- •Свойства
- •Слабый распад
- •Дисперсионное взаимодействие
- •Характеристика ковалентной связи.
Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
Электрохимический потенциал — физическая величина, связывающая химический потенциал (μ) и электрический потенциал (φ) некоторой электрохимической системы соотношением: A = μ + e·φ где А — работа, нарушающая электрохимическое равновесие системы; e — элементарный заряд частицы. Для растворенного вещества: μ = μ0 + R*T*lnC + z*F*φ где μ0 - Стандартный химический потенциал, зависящий от природы растворителя. С - концентрация вещества R - газовая постоянная T – температура z - валентность иона F - число Фарадея φ - электрический потенциал
Уравнение
Нернста-Планка
описывает процесс пассивного транспорта
ионов в поле электрохимического
потенциала.
Поток I заряженных
ионов пропорционален градиенту
электрохимического потенциала в
направлении оси x и
зависит от подвижности u и
концентрации C ионов:
F - число
Фарадея, Z -
валентность иона,
T -
абсолютная температура, R - газовая
постоянная,
-
электрический потенциал на мембране.
Гидратация ионов – основная причина распада электролита на ионы. Ионы в растворе беспорядочно перемещаются в разных направлениях. Но при пропускании через раствор электрического тока они приобретают направленное движение. Положительно заряженные ионы направляются к отрицательному электроду – катоду. Их называют катионами. К катионам относятся ионы H+, ионы металлов (например, K+, Ca2+, Fe3+ и т.д.). Отрицательно заряженные ионы перемещаются к положительному электроду – аноду. Их называют анионами. К анионам относятся гидроксид-ионы OH-, ионы кислотных остатков (например, Cl-, NO3-, PO43-, HCO3- и т.д.).
Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
Классификация термодинамических систем по признаку их возможности обмена энергией и веществом с окружающей средой или с другими системами: а) Система открытая, если возможен обмен энергией и веществом. б) Система закрытая, если обмен энергией возможен, а обмен веществом невозможен. Закрытые системы дополнительно подразделяются по признаку возможности осуществления энергообменаследующим образом: а) Система замкнутая, если энергообмен возможен, но невозможен обмен с внешней средой путем совершения механической работы. б) Система изолированная, если невозможен обмен системы с окружающей средой ни энергией, ни веществом. в) Система адиабатная, если полностью отсутствует теплообмен системы с окружающей средой. В адиабатной системе возможен как обратимый, так и необратимый адиабатный процесс. Обратимый адиабатный процесс называется также изоэнтропийным процессом, что подчеркивает постоянство энтропии в адиабатной системе. А постоянство энтропии означает отсутствие необратимых диссипативных потерь энергии.
Первый закон термодинамики. Формулировка: В изолированной термодинамической системе сумма всех видов энергии является величиной постоянной. Этот закон является частным случаем всеобщего закона сохранения и превращения энергии, который гласит, что энергия не появляется и не исчезает, а только переходит из одного вида в другой. Из этого закона следует, что уменьшение общей энергии в одной системе, состоящей из одного или множества тел, должно сопровождаться увеличением энергии в другой системе тел. Существую другие формулировки этого закона:1) Не возможно возникновение или уничтожение энергии (эта формулировка говорит о невозможности возникновения энергии из ничего и уничтожения ее в ничто). 2) Любая форма движения способна и должна превращаться в любую другую форму движения (эта философская формулировка подчеркивает неуничтожимость энергии и ее способность взаимопревращаться в любые другие виды энергии). 3)Вечный двигатель первого рода невозможен. (Под вечным двигателем первого рода понимают машину, которая была бы способна производить работу не используя никакого источника энергии). 4) Теплота и работа являются двумя единственно возможными формами передачи энергии от одних тел к другим.
Закон Гесса — основной закон термохимии, который формулируется следующим образом: Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания. Иными словами, количество теплоты, выделяющееся или поглощающееся при каком-либо процессе, всегда одно и то же, независимо от того, протекает ли данное химическое превращение в одну или в несколько стадий (при условии, чтотемпература, давление и агрегатные состояния веществ одинаковы). Например, окисление глюкозы в организме осуществляется по очень сложному многостадийному механизму, однако суммарный тепловой эффект всех стадий данного процесса равен теплоте сгорания глюкозы. На рисунке приведено схематическое изображение некоторого обобщенного химического процесса превращения исходных веществ А1, А2… в продукты реакции В1, В2…, который может быть осуществлен различными путями в одну, две или три стадии, каждая из которых сопровождается тепловым эффектом ΔHi. Согласно закону Гесса, тепловые эффекты всех этих реакций связаны следующим соотношением: ΔH1 = ΔH2 + ΔH3 = ΔH4 + ΔH5 + ΔH6 Закон открыт русским химиком Г.И. Гессом в 1840 г.; он является частным случаем первого начала термодинамики применительно к химическим реакциям. Практическое значение закона Гесса состоит в том, что он позволяет рассчитывать тепловые эффекты самых разнообразных химических процессов; для этого обычно используют ряд следствий из него. док-во 1го закона док что: живые орагнизмы не источники новой энергии …окисление поступ в них питательных веществ приводит к выделение эквивалентного кол-ва энергии 18в(Лаувазье и Лаплас) ледяной калориметр …колво углек газа сравнили с сжиг продуктов в колоритмич бомбе-прямая коллориментрия…19в прямая коллориметрия кол-во поглощ кислор также, авдел углек и мочевины отсжа кол-во Б Ж У оксисл в организме … совпадение только если организм не соввершает работы и не происх накопление массы-следсвтие …з Гесса: тепловой эффект-энтальпия Н зависит от началального и конечного состояния с-мы и не завист от пути перехожа из 1го сост в др