
- •Предмет и задачи биофизики. История развития биофизики. Разделы биофизики.
- •Особенности кинетики биологических процессов. Параметры и переменные. Влияние концентраций на скорость реакций. Понятие «узкого места».
- •Механизмы первичных реакций в организме при размене физической энергии на химическую (теория мишени, теория непрямого действия, теория цепных процессов).
- •Влияние температуры на скорость реакций в биологических системах.
- •Перекисное окисление липидов в мембранах. Биологические последствия пероксидации липидов.
- •Кинетика ферментативных реакций (уравнения Михаэлиса-Ментен).
- •Чувствительность различных биологических объектов к радиации. Действие ионизирующего облучения на живые системы.
- •Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
- •Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
- •Раздел III. Пространственная организация биополимеров
- •Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
- •§1. Статистический характер организации полимеров
- •Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
- •Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
- •Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
- •Транспорт электролитов (ионное равновесие на границе мембрана-раствор, равновесие Доннана).
- •Второй закон термодинамики. Понятие градиента. Энтропия, свободная и связанная энергия.
- •Пространственная конформация биополимеров (стереоспецифичность аминокислот, первичная, вторичная, третичная, четверичная структура белка).
- •Вида ионизирующих излучений. Единицы измерения дозы ионизирующего излучения.
- •Изменение энтропии в открытых системах. Стационарные состояния и состояния термодинамического равновесия. Принцип Ле-Шателье.
- •Механно-химические процессы в полимерах.
- •Активный транспорт (участие атф-аз вм активном транспорте ионов через биологические мембраны).
- •Переносчики и каналы.
- •Устойчивость и неустойчивость стационарного состояния (на примере гидродинамической модели).
- •1. Кинетические уравнения Лотки (a.J. Lotka. Elements of Physical Biology, 1925)
- •2. Модель Вольтерра
- •(По к. Вилли, в. Детье, 1974)
- •Активный транспорт (электрогенный транспорт ионов – опыт Уссинга и ).
- •Понятие обобщенных сил и потоков. Соотношение взаимности Онзагера. Теорема Пригожина.
- •Простая и облегченная диффузия.
- •Кооперативные свойства макромолекул (механизм кооперативного связывания кислорода гемоглобином и миоглобином).
- •Потенциал покоя и его происхождение.
- •[Править]История открытия
- •[Править]Общие положения
- •[Править]Формирование потенциала покоя
- •Поверхностный заряд мембранных систем (происхождение дзета-потенциалов – представление Гельмгольца, Гуи, Штерна; определение дзета-потенциалов).
- •Состояние воды и гидрофобные взаимодействия.
- •Потенциал действия (изменение электропроводной мембраны, потоки ионов натрия и калия, схема функционирования натриевого канала при возбуждении). Распространение возбуждения.
- •Роль гидрофобных взаимодействий в формировании структуры белков. Переход спираль-клубок. Переход глобула-клубок.
- •Переход клубок—глобула
- •Транспорт неэлектролитов (проницаемость мембран для воды, роль коллоидно-осмотического давления плазмы в переносе воды).
- •Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
- •Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
- •Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
- •5. Живая ткань как проводник переменного электрического тока. Дисперсия
- •Химия и физика мышцы (схема взаимодействия актина с миозином по Хаксли, кривая зависимости скорости изотонического сокращения от величины нагрузки по Хиллу).
- •Структура биомембран: развитие представление о структуре, модельные мембранные системы.
- •Ковалентные и слабые связи.
- •21. Слабые связи.
- •Динамические модели биологических систем. Понятие фазовой плоскости. Фазовой портрет системы.
- •12. Понятие фазовой плоскости. Фазовый портрет системы.
- •Свободные радикалы. Методы изучения. Классификация свободных радикалов.
- •Классификация свободных радикалов, образующихся в нашем организме
- •Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима q). Первичные радикалы
- •Активные формы кислорода
- •Окись азота
- •Радикал коэнзима q
- •Клеточные системы антирадикальной защиты.
- •Динамика мембран. Фазовые переходы в липидном бислое.
- •Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).
- •Свойства
- •Слабый распад
- •Дисперсионное взаимодействие
- •Характеристика ковалентной связи.
Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
Часть вторая. Молекулярная биофизика
Раздел III. Пространственная организация биополимеров
Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
§1. Статистический характер организации полимеров
Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
В термодинамике стационарным состоянием называют состояние вещества, когда основные его характеристики не изменяются со временем.
Множественность решений нелинейных диф-ференц. ур-ний означает множественность стационарных состояний системы. Среди этих решений существуют динамически устойчивые и неустойчивые. Динамически устойчивым решениям соответствуют состояния, в которых малые флуктуации затухают и не могут перевести систему в новое состояние. Динамич. неустойчивость решения означает, что флуктуация спонтанно разрастается и система переходит в иное стационарное состояние. Оно может обладать более низкой симметрией, т.е. иметь более высокую степень упорядоченности. Т. обр., система с помощью флуктуации "выбирает" одно из возможных стационарных состояний, соответствующих устойчивому решению ур-ний макроскопич. процесса. Кооперативный (согласованный) характер поведения частиц воткрытая система отражает причинность процессов самоорганизации на микроскопич. уровне. Только в том случае, если микроскопич. процессы в силу наличия механизмов обратной связи между ними согласованы, наблюдается спонтанное возникновение диссипативных структур. В открытая система известны след, диссипативные структуры: пространственно неоднородные; периодические во времени (автоколебания); пространственно-временные псриодич. структуры (автоволны); бистабильные структуры (типа триггера).
Способы переключения триггера Слово триггер означает переключатель. Рассмотрим фазовый портрет системы, обладающей двумя устойчивыми стационарными состояниями (рис. 7.3). Здесь a,c – устойчивые стационарные состояния, b – седло. Если начальное положение изображающей точки расположено левее сепаратрисы седла (пунктирная линия), система находится в области притяжения особой точки a и со временем стремится к этому устойчивому стационарному состоянию. Из точек, лежащих правее сепаратрисы, система будет двигаться к особой точке c. Рассмотрим возможные способы переключения системы из режима a в режим c. 1. Силовое переключение. Можно изменить значения концентраций (например, добавить определенное количество вещества x1, так что система «перепрыгнет» через сепаратрису, например в некоторую точку c1, которая находится по правую сторону сепаратрисы в области влияния устойчивого стационарного состояния с, к которому система перейдет сама с течением времени. На фазовом портрете рис. 7.3 силовое (специфическое) переключение показано двойной стрелкой. Кинетика переменных при таком переключении показана на рис. 7.4.
2. Параметрическое переключение. Другой – неспецифический способ переключения показан на рис. 7.5, 7.6. При таком способе переключения непосредственному воздействию подвергаются не переменные, а параметры системы. Это может быть достигнуто разными способами, например, изменением скорости поступления субстрата, температуры, рН. Сущность такого способа переключения состоит в использовании зависимости фазового портрета системы от некоторого управляющего параметра. Пусть с изменением этого параметра фазовый портрет претерпевает последовательность превращений, показанных на рис. 7.5 (а – г). На стадии (в) устойчивый узел (а) и седло (b) сливаются в одну полуустойчивую точку седло‑узел. На стадии (с) в системе остается лишь одно устойчивое стационарное состояние, к которому и сходятся все фазовые траектории. Тогда система, находившаяся в начале процесса переключения в стационарном режиме а, в результате параметрического переключения окажется в области притяжения единственного устойчивого стационарного режима с, куда с течением времени и перейдет (рис. 7.6). Параметрический способ переключения реализуется при изменении любой генетической программы, он может также иметь место при изменении внешних условий, приводящих к изменению управляющего параметра системы. ГИСТЕРЕЗИСНЫЕ ЯВЛЕНИЯ В электронных приборах, выражаются в неоднозначной зависимости к.-л. характеристики электронного прибора от одной из определяющих её величин. Пример Г. я. — электронный гистерезис отражательных клистронов, проявляющийся в неоднозначной зависимости мощности генерации Рген от напряжения на отражателе. Электронный гистерезис может привести к срыву генерации при одном значении напряжения иотр и её скачкообразному возникновению при другом его значении.