
- •Предмет и задачи биофизики. История развития биофизики. Разделы биофизики.
- •Особенности кинетики биологических процессов. Параметры и переменные. Влияние концентраций на скорость реакций. Понятие «узкого места».
- •Механизмы первичных реакций в организме при размене физической энергии на химическую (теория мишени, теория непрямого действия, теория цепных процессов).
- •Влияние температуры на скорость реакций в биологических системах.
- •Перекисное окисление липидов в мембранах. Биологические последствия пероксидации липидов.
- •Кинетика ферментативных реакций (уравнения Михаэлиса-Ментен).
- •Чувствительность различных биологических объектов к радиации. Действие ионизирующего облучения на живые системы.
- •Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
- •Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
- •Раздел III. Пространственная организация биополимеров
- •Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
- •§1. Статистический характер организации полимеров
- •Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
- •Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
- •Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
- •Транспорт электролитов (ионное равновесие на границе мембрана-раствор, равновесие Доннана).
- •Второй закон термодинамики. Понятие градиента. Энтропия, свободная и связанная энергия.
- •Пространственная конформация биополимеров (стереоспецифичность аминокислот, первичная, вторичная, третичная, четверичная структура белка).
- •Вида ионизирующих излучений. Единицы измерения дозы ионизирующего излучения.
- •Изменение энтропии в открытых системах. Стационарные состояния и состояния термодинамического равновесия. Принцип Ле-Шателье.
- •Механно-химические процессы в полимерах.
- •Активный транспорт (участие атф-аз вм активном транспорте ионов через биологические мембраны).
- •Переносчики и каналы.
- •Устойчивость и неустойчивость стационарного состояния (на примере гидродинамической модели).
- •1. Кинетические уравнения Лотки (a.J. Lotka. Elements of Physical Biology, 1925)
- •2. Модель Вольтерра
- •(По к. Вилли, в. Детье, 1974)
- •Активный транспорт (электрогенный транспорт ионов – опыт Уссинга и ).
- •Понятие обобщенных сил и потоков. Соотношение взаимности Онзагера. Теорема Пригожина.
- •Простая и облегченная диффузия.
- •Кооперативные свойства макромолекул (механизм кооперативного связывания кислорода гемоглобином и миоглобином).
- •Потенциал покоя и его происхождение.
- •[Править]История открытия
- •[Править]Общие положения
- •[Править]Формирование потенциала покоя
- •Поверхностный заряд мембранных систем (происхождение дзета-потенциалов – представление Гельмгольца, Гуи, Штерна; определение дзета-потенциалов).
- •Состояние воды и гидрофобные взаимодействия.
- •Потенциал действия (изменение электропроводной мембраны, потоки ионов натрия и калия, схема функционирования натриевого канала при возбуждении). Распространение возбуждения.
- •Роль гидрофобных взаимодействий в формировании структуры белков. Переход спираль-клубок. Переход глобула-клубок.
- •Переход клубок—глобула
- •Транспорт неэлектролитов (проницаемость мембран для воды, роль коллоидно-осмотического давления плазмы в переносе воды).
- •Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
- •Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
- •Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
- •5. Живая ткань как проводник переменного электрического тока. Дисперсия
- •Химия и физика мышцы (схема взаимодействия актина с миозином по Хаксли, кривая зависимости скорости изотонического сокращения от величины нагрузки по Хиллу).
- •Структура биомембран: развитие представление о структуре, модельные мембранные системы.
- •Ковалентные и слабые связи.
- •21. Слабые связи.
- •Динамические модели биологических систем. Понятие фазовой плоскости. Фазовой портрет системы.
- •12. Понятие фазовой плоскости. Фазовый портрет системы.
- •Свободные радикалы. Методы изучения. Классификация свободных радикалов.
- •Классификация свободных радикалов, образующихся в нашем организме
- •Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима q). Первичные радикалы
- •Активные формы кислорода
- •Окись азота
- •Радикал коэнзима q
- •Клеточные системы антирадикальной защиты.
- •Динамика мембран. Фазовые переходы в липидном бислое.
- •Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).
- •Свойства
- •Слабый распад
- •Дисперсионное взаимодействие
- •Характеристика ковалентной связи.
Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
Ингибиторы Многие соединения могут влиять на обмен веществ, модулируя активность соответствующих ферментов. Особенно важные функции при этом выполняют ингибиторы ферментов. Ингибиторами ферментов являются многие лекарственные вещества природного или синтетического происхождения (. Метаболиты также могут быть ингибиторами ферментов в процессах регуляции. Типы ингибирования Большинство ингибиторов ферментов действуют обратимо, т. е. не вносят в молекулу фермента каких-либо изменений после своей диссоциации. Необратимые ингибиторы ферментов, которые необратимо модифицируют целевой фермент. Принцип действия ингибитора, тип его ингибирования определяют путем сравнения кинетики реакции в присутствии ингибиторам без него. Различают конкурентное (А, слева) и неконкурентное (А, справа) ингибирование. В регуляции обмена веществ важную роль играет аллостерическое ингибирование (А, 6). Так называемые аналоги субстрата (2) имеют свойства, подобные свойствам субстрата целевого фермента. Они обратимо блокируют часть молекул имеющегося в наличии фермента, но не могут далее превращаться в продукт. Поэтому для достижения половины максимальной скорости реакции необходимы более высокиеконцентрации субстрата: в присутствии такого ингибитора константа Михаэлиса Km растет (Б). Субстрат в высоких концентрациях вытесняет ингибитор с фермента. Поэтому максимальная скорость V при этом типе торможения не претерпевает изменений. Так как субстрат и ингибитор конкурируют за место связывания на ферменте, данный тип торможения называют конкурентным. Аналоги переходного состояния (3) также действуют как конкурентные ингибиторы. Если ингибитор реагирует с функционально важной группой фермента, не препятствуя связыванию субстрата, такое ингибирование называется неконкурентным (на схеме справа). В этом случае Km остается неизменной, напротив уменьшается концентрация функционально активного фермента [Е] t и, следовательно, максимальная скорость реакции V. Неконкурентные ингибиторы действуют как правило необратимо, поскольку они модифицируют функциональные группы целевого фермента (4). В случае так называемых "суицидных субстратов" (5) речь идет о субстратных аналогах, содержащих дополнительно реакционную группу. Вначале они связываются обратимо, а затем образуют ковалентное соединение с активным центром фермента. Поэтому ингибирование такими соединениями проявляется как неконкурентное. Известным примером такого ингибитора является антибиотик пенициллин. Аллостерические ингибиторы связываются с отдельными участками фермента вне активного центра (6). Такое связывание влечет за собой конформационные изменения в молекуле фермента, которые приводят к уменьшению его активности . Аллостерические эффекты встречаются практически только в случаеолигомерных ферментов. Кинетику таких систем нельзя описать с помощью простой модели Михаэлиса-Ментен. Торможение субстратное - снижение скорости реакции при значительном повышении концентрации субстрата. Исследования активности ряда ферментов показали, что скорость ферментативной реакции с увеличением концентрации субстрата первоначально возрастает в соответствии с законом Михаэлиса, ио, достигнув максимума, при дальнейшем увеличении концентрации субстрата начинает падать. Механизм ин-гибирующего действия избытка субстрата разнообразен. Индукция синтеза ферментов. В большинстве случаев регуляция путем индукции характерна для катаболических путей, где в качестве индукторов выступают обычно субстраты этих путей. Классический пример индуцибельного фермента — (3-галактозидаза Е. coli. Оказалось, что если клетки Е. coli выращивать в среде, содержащей глюкозу, то они не могут использовать лактозу. Если такие клетки поместить в среду, где лактоза — единственный источник углерода, после некоторого периода в них происходит интенсивный синтез фермента (3-галактозидазы, катализирующего гидролиз лактозы на D-глюкозу и D-галактозу. С помощью этого фермента Е. coli может теперь использовать лактозу в качестве единственного источника углерода. Если затем клетки, растущие на среде с лактозой, перенести на среду с глюкозой, синтез (3-галактозидазы прекращается. Изучение индукции (3-галактозидазы у Е. coli позволило установить, что рост клеток на среде с лактозой происходит не в результате отбора мутантов, у которых способность использовать лактозу есть следствие мутации. Способностью синтезировать этот фермент обладают все клетки. Было также показано, что в процессе индукции происходит не активирование уже имеющегося в клетках фермента (З-галактозидазы, а его синтез de novo из аминокислот. Лактозный оперон Е. coli, состоящий из трех структурных генов, промотора и оператора, был первой ферментной системой, на которой Ж. Моно и Ф. Жакоб изучали механизм индукции синтеза ферментов. Репрессия ферментов Подавление синтеза какого-либо фермента в присутствии определенного (порогового) количества продукта, образуемого в цепи метаболических реакций с его участием - иными словами, Р.ф. является ретроингибированием ; эффект Р.ф. впервые установлен группой Ж.Моно в 1953 при анализе синтеза триптофансинтетазы (гены trpA и trpB E.coli), угнетаемого при избытке триптофана.