
- •Предмет и задачи биофизики. История развития биофизики. Разделы биофизики.
- •Особенности кинетики биологических процессов. Параметры и переменные. Влияние концентраций на скорость реакций. Понятие «узкого места».
- •Механизмы первичных реакций в организме при размене физической энергии на химическую (теория мишени, теория непрямого действия, теория цепных процессов).
- •Влияние температуры на скорость реакций в биологических системах.
- •Перекисное окисление липидов в мембранах. Биологические последствия пероксидации липидов.
- •Кинетика ферментативных реакций (уравнения Михаэлиса-Ментен).
- •Чувствительность различных биологических объектов к радиации. Действие ионизирующего облучения на живые системы.
- •Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
- •Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
- •Раздел III. Пространственная организация биополимеров
- •Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
- •§1. Статистический характер организации полимеров
- •Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
- •Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
- •Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
- •Транспорт электролитов (ионное равновесие на границе мембрана-раствор, равновесие Доннана).
- •Второй закон термодинамики. Понятие градиента. Энтропия, свободная и связанная энергия.
- •Пространственная конформация биополимеров (стереоспецифичность аминокислот, первичная, вторичная, третичная, четверичная структура белка).
- •Вида ионизирующих излучений. Единицы измерения дозы ионизирующего излучения.
- •Изменение энтропии в открытых системах. Стационарные состояния и состояния термодинамического равновесия. Принцип Ле-Шателье.
- •Механно-химические процессы в полимерах.
- •Активный транспорт (участие атф-аз вм активном транспорте ионов через биологические мембраны).
- •Переносчики и каналы.
- •Устойчивость и неустойчивость стационарного состояния (на примере гидродинамической модели).
- •1. Кинетические уравнения Лотки (a.J. Lotka. Elements of Physical Biology, 1925)
- •2. Модель Вольтерра
- •(По к. Вилли, в. Детье, 1974)
- •Активный транспорт (электрогенный транспорт ионов – опыт Уссинга и ).
- •Понятие обобщенных сил и потоков. Соотношение взаимности Онзагера. Теорема Пригожина.
- •Простая и облегченная диффузия.
- •Кооперативные свойства макромолекул (механизм кооперативного связывания кислорода гемоглобином и миоглобином).
- •Потенциал покоя и его происхождение.
- •[Править]История открытия
- •[Править]Общие положения
- •[Править]Формирование потенциала покоя
- •Поверхностный заряд мембранных систем (происхождение дзета-потенциалов – представление Гельмгольца, Гуи, Штерна; определение дзета-потенциалов).
- •Состояние воды и гидрофобные взаимодействия.
- •Потенциал действия (изменение электропроводной мембраны, потоки ионов натрия и калия, схема функционирования натриевого канала при возбуждении). Распространение возбуждения.
- •Роль гидрофобных взаимодействий в формировании структуры белков. Переход спираль-клубок. Переход глобула-клубок.
- •Переход клубок—глобула
- •Транспорт неэлектролитов (проницаемость мембран для воды, роль коллоидно-осмотического давления плазмы в переносе воды).
- •Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
- •Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
- •Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
- •5. Живая ткань как проводник переменного электрического тока. Дисперсия
- •Химия и физика мышцы (схема взаимодействия актина с миозином по Хаксли, кривая зависимости скорости изотонического сокращения от величины нагрузки по Хиллу).
- •Структура биомембран: развитие представление о структуре, модельные мембранные системы.
- •Ковалентные и слабые связи.
- •21. Слабые связи.
- •Динамические модели биологических систем. Понятие фазовой плоскости. Фазовой портрет системы.
- •12. Понятие фазовой плоскости. Фазовый портрет системы.
- •Свободные радикалы. Методы изучения. Классификация свободных радикалов.
- •Классификация свободных радикалов, образующихся в нашем организме
- •Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима q). Первичные радикалы
- •Активные формы кислорода
- •Окись азота
- •Радикал коэнзима q
- •Клеточные системы антирадикальной защиты.
- •Динамика мембран. Фазовые переходы в липидном бислое.
- •Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).
- •Свойства
- •Слабый распад
- •Дисперсионное взаимодействие
- •Характеристика ковалентной связи.
Ковалентные и слабые связи.
Ковалентные связи.
взаимод атомов биол молекул-химич эквивалент свзяли-сильные (больш колв-ов Е)
сидбное взаимо определ первчи стру-ру биополимеров. ковал св мб как простые так и кратные. они образ внешними электрон взаимод атомов-общая электрич связи-общая эл пара соотв валентному штриху.
Ковал:
1 Е связи (А необх для её разрыва)
2-дина связи-равновес расстояние между ядрами атомов
3-геометрич распол свзяли
в обл перекрывани прлотность наиб, вероят нахожд увелич
в случ не насыщ свзяли макс плот-ть на и под штрихом
простые и кратные св отлич конформвционными св-ами. поворот простой-легко без разрыва.
вокруг 2ой связи треб разрыв пи св
в этаки 3 ккал на моь
вращ ..в этилене (я в) 40 ккал на моль
но биол моле не могули бы функц ,если бы помимо силн ковал св внутри биомол и между ними не было ни валентные ни химич слаб связи
21. Слабые связи.
слабые:
1) ионные св-ионы или заряж частицы
сила взаим -з кулона
Е взаим: U=e1*e2/E(закруг)r
U-е взаим с зарядами е 1 и е2
E zak диэлектрич прониц среды завси отраст-ти
r рассоян между ионами
разноим притяг у меньше 0
обноим оттал у больш 0
2) ион-дипольные силы-ионы и полярные группы мол
3) ориентационные силы-электростатич взаимпод между диполями
-антипаралленльно
2 в хвост друг друга
U обратно пропор кубу расстояния между ними
4) индукционные силы-пост диполь индуцирует др молекуле дипольный момент с которым он взаимод
p=aE
а-поляризуемость, характ спос-ть электрич облочки смещ под дейт электростатич поля.
перечисл слаб взаимод -электростатич ,Е притяж и отталк на основе классич электростатики, квантов эффекты не существ
5) дисперсионные силы-для валентно насыщ эл облочек атомов и молекул-сила не завис от налч зардов дипольных моментов. взаимод между молеку N,O инертных газов
эти силы определ не идеальное поведение без дипольных газов, отв за существов молекул кристаллов(орг в-ва) дисперсион силы им квантовую механич природу.
в осн дисперсного взаимод -представление элект -гармоничными асцеляторами(элект не стабильны, суз нулевые колеб электр, кот связс появл мгновенноных дипольных моментов в молекуле)
появл диполь момента в 1 мол-эл. поле--индуцир дипол момент в дру молекуле.
между 2мя один. асцеляторами-мгнов диполь-дпольное взаимод-и--первоначальное колебание этих 2х асцеляторов меняется--взамодейдствие
по др дисперс силы назыв Лондоновскими вмсетс ориентац и индукцин образ вандервальское взаимод созд атоами 2 в группах -H N-H F-H Cl-H S-H в рез-те водрод свзя эти кр с валентно не насыщ атомамию
энерг водородных связи не велика от 4 до 29 кДж на моль, но они опреде уник строения и св-ва воды и формир 2у. стр-ру биополимеров Е водор св зависит от ссиметрии чем больше ассиметрия. тем ниже энергия св
з сохранение энер 19 в для с-м (большое значение тепловые процессы)
согласно 1 з тд -тд с-ма (пар)
м совершать А только за счёт своей U или каких=то внещних источниктов Е
1ое начало тд обясн не возможность существ вычного двиг 1го рожа
сущность 1 зтд : при сообщении тд с-ме нек кол-ва теплоты происх измен U
Q=дель U +A
Q & A-не завис измер величины
дел U=Q-A
A-произведенеие давление на измен объём-работа разширение A=pдел V
живые с-мы не могут раб как тепловые машины. в живых системах А соверш за счёт внутр Е различных бх проц. При это не движ сила, а побочная потеря
химич и биол р-ии обычно протек при р=конст или V=const -в кач тд функции исполь не Q , а энтальпию(теплосодерж с-мы) H=delU+pdelV)
a delH м определить QЮ поглощ с-ой