
- •Предмет и задачи биофизики. История развития биофизики. Разделы биофизики.
- •Особенности кинетики биологических процессов. Параметры и переменные. Влияние концентраций на скорость реакций. Понятие «узкого места».
- •Механизмы первичных реакций в организме при размене физической энергии на химическую (теория мишени, теория непрямого действия, теория цепных процессов).
- •Влияние температуры на скорость реакций в биологических системах.
- •Перекисное окисление липидов в мембранах. Биологические последствия пероксидации липидов.
- •Кинетика ферментативных реакций (уравнения Михаэлиса-Ментен).
- •Чувствительность различных биологических объектов к радиации. Действие ионизирующего облучения на живые системы.
- •Аллостерическое и конкурентное ингибирование ферментативных реакций. Субстратное торможение. Индукция и репрессия синтеза ферментов (по Жакобу и Моно).
- •Статистический характер организации биополимеров (на примере двумерной свободно сочлененной полимерной цепи).
- •Раздел III. Пространственная организация биополимеров
- •Глава VII. Пространственные конфигурации полимерных молекул (стр. 167 - 182)
- •§1. Статистический характер организации полимеров
- •Множественность стационарных состояний. Модели триггерного типа. Силовое и параметрическое переключение триггера. Гистерезисные явления.
- •Транспорт электролитов (электрохимический потенциал, электродиффузионное уравнение Нернста-Планка , гидратация ионов).
- •Классификация термодинамических систем. Первый закон термодинамики и его применимость в биологии. Закон Гесса.
- •Транспорт электролитов (ионное равновесие на границе мембрана-раствор, равновесие Доннана).
- •Второй закон термодинамики. Понятие градиента. Энтропия, свободная и связанная энергия.
- •Пространственная конформация биополимеров (стереоспецифичность аминокислот, первичная, вторичная, третичная, четверичная структура белка).
- •Вида ионизирующих излучений. Единицы измерения дозы ионизирующего излучения.
- •Изменение энтропии в открытых системах. Стационарные состояния и состояния термодинамического равновесия. Принцип Ле-Шателье.
- •Механно-химические процессы в полимерах.
- •Активный транспорт (участие атф-аз вм активном транспорте ионов через биологические мембраны).
- •Переносчики и каналы.
- •Устойчивость и неустойчивость стационарного состояния (на примере гидродинамической модели).
- •1. Кинетические уравнения Лотки (a.J. Lotka. Elements of Physical Biology, 1925)
- •2. Модель Вольтерра
- •(По к. Вилли, в. Детье, 1974)
- •Активный транспорт (электрогенный транспорт ионов – опыт Уссинга и ).
- •Понятие обобщенных сил и потоков. Соотношение взаимности Онзагера. Теорема Пригожина.
- •Простая и облегченная диффузия.
- •Кооперативные свойства макромолекул (механизм кооперативного связывания кислорода гемоглобином и миоглобином).
- •Потенциал покоя и его происхождение.
- •[Править]История открытия
- •[Править]Общие положения
- •[Править]Формирование потенциала покоя
- •Поверхностный заряд мембранных систем (происхождение дзета-потенциалов – представление Гельмгольца, Гуи, Штерна; определение дзета-потенциалов).
- •Состояние воды и гидрофобные взаимодействия.
- •Потенциал действия (изменение электропроводной мембраны, потоки ионов натрия и калия, схема функционирования натриевого канала при возбуждении). Распространение возбуждения.
- •Роль гидрофобных взаимодействий в формировании структуры белков. Переход спираль-клубок. Переход глобула-клубок.
- •Переход клубок—глобула
- •Транспорт неэлектролитов (проницаемость мембран для воды, роль коллоидно-осмотического давления плазмы в переносе воды).
- •Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
- •Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
- •Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
- •5. Живая ткань как проводник переменного электрического тока. Дисперсия
- •Химия и физика мышцы (схема взаимодействия актина с миозином по Хаксли, кривая зависимости скорости изотонического сокращения от величины нагрузки по Хиллу).
- •Структура биомембран: развитие представление о структуре, модельные мембранные системы.
- •Ковалентные и слабые связи.
- •21. Слабые связи.
- •Динамические модели биологических систем. Понятие фазовой плоскости. Фазовой портрет системы.
- •12. Понятие фазовой плоскости. Фазовый портрет системы.
- •Свободные радикалы. Методы изучения. Классификация свободных радикалов.
- •Классификация свободных радикалов, образующихся в нашем организме
- •Первичные радикалы (радикалы кислорода, окись азота, радикал коэнзима q). Первичные радикалы
- •Активные формы кислорода
- •Окись азота
- •Радикал коэнзима q
- •Клеточные системы антирадикальной защиты.
- •Динамика мембран. Фазовые переходы в липидном бислое.
- •Слабые взаимодействия (ион-ионное взаимодействие, диполь-дипольное взаимодействие, наведенные диполи, лондоновские или дисперсные силы).
- •Свойства
- •Слабый распад
- •Дисперсионное взаимодействие
- •Характеристика ковалентной связи.
Электропроводность биосистем (закономерности происхождения постоянного тока через биологические объекты; явления поляризации).
Сокращение мышцы (схема взаимодействия актина и миозина по а.Хаксли).
Электропроводность биосистем (закономерности происхождения переменного тока через биологические объекты; дисперсия электропроводности).
Переменный ток – это такой ток, направление и числовое значение которого
меняются с течением времени (знакопеременный ток).
В медицинской практике применяются следующие виды токов по форме кривой тока:
· Синусоидальный· Прямоугольный · Треугольный· Трапециевидный · Игольчато-экспоненциальный
Самым простым является периодический синусоидальный ток. Он легко описывается
математически и графически, форма его не искажается в электрических цепях с
R, C, L элементами.
При пропускании тока через живую ткань, её можно рассматривать как
электрическую цепь, состоящую из определенных элементов.
Экспериментально установлено, что это цепь обладает свойствами активного
сопротивления и ёмкости. Это доказывается выделением тепла и уменьшением
полного сопротивления ткани с возрастанием частоты. Свойств индуктивности у
живой ткани практически не обнаруживается. Таким образом, живая ткань
представляет собой сложную, но не полную электрическую цепь.
Импеданс живой ткани можно рассматривать как для последовательного, так и для
параллельного соединения её элементов.
При последовательном соединении токи через элементы равны, общее приложенное
напряжение будет векторной суммой напряжений на R и C элементах и формула
импеданса последовательной цепи будет иметь вид:
Z_ - импеданс последовательной цепи,
R - её активное сопротивление,
XC - ёмкостное сопротивление.
При параллельном соединении напряжения на R и C элементах равны, общий ток
будет векторной суммой токов каждого элемента, а фомула импеданса будет
следующей:
Теоретические формулы импеданса живой ткани при параллельном и
последовательном соединении её элементов от экспериментальных отличаются
следующим:
1.При последовательной схеме соединения практические данные дают большие
отклонения на низких частотах.
2.При параллельной схеме эти измерения показывают конечное значение Z, хотя
теоретически оно должно стремиться к нулю.
Эквивалентная электрическая схема живой ткани – это условная модель,
приближенно характеризующая живую ткань, как проводник переменного тока.
Схема позволяет судить:
1.Какими электрическими элементами обладает ткань
2.Как соединены эти элементы.
3.Как будут меняться свойства ткани при изменении частоты тока.
В основе схемы лежат три положения:
1.Внеклеточная среда и содержимое клетки есть ионные проводники с активным
сопротивлением среды Rср и клетки Rк.
2.Клеточная мембрана есть диэлектрик, но не идеальный, а с небольшой ионной
проводимостью, а, следовательно, и сопротивлением мембраны Rм.
3.Внеклеточная среда и содержимое клетки, разделённые мембраной, являются
конденсаторами См определенной ёмкости (0,1 – 3,0 мкФ/см2).
Если в качестве модели живой ткани взять жидкую тканевую среду – кровь,
содержащую только эритроциты, то при составлении эквивалентной схемы нужно
учитывать пути электрического тока.
Их два:
1.В обход клетки, через внеклеточную среду.
2.Через клетку.
Путь в обход клетки представлен только сопротивлением средыRср.
Путь через клетку сопротивлением содержимого клетки Rк, а также
сопротивлением и ёмкостью мембраны.Rм, См.
Если заменить электрические характеристики соответствующими обозначениями, то
получим эквивалентные схемы разной степени точности:
Схема Фрике (ионная проводимость не
учитывается).
Схема Швана (ионная проводимость учитывается в виде сопротивления мембраны)
Обозначения на схеме:
Rcp - активное сопротивление клеточной среды
Rk - Сопротивление клеточного содержимого
Cm - ёмкость мембраны
Rm - сопротивление мембраны.
Анализ схемы показывает, что при увеличении частоты тока проводимость
клеточных мембран увеличивается, а полное сопротивление тканевой среды
уменьшается, что соответствует практически проведенным измерениям.