
- •Глава 1. М е м б р а н н ы е э л е к т р от е х н ол о г и и
- •1.1.Основы теории электрокинетических и электрокапиллярных явлений в процессах электромембранных технологий
- •1.2. Общее описание электромембранных процессов
- •1.3. Классификация эмп
- •1.4. Требования к ионообменным мембранам
- •1.6. Электродиализ с биполярными мембранами
- •1.7. Мембранный электролиз
- •1.8. Электродеионизация
- •1. 9. Электросорбция
- •1.10. Электрогравитация (электроосаждение)
- •1. 12. Транспортное объединение
- •1.13. Электрофорез
- •Глава 2. Электротехнологии и электротехнологические установки с применением сильных электрических полей
- •2.1. Технологические процессы, основанные на силовом воздействии электрических полей на материалы
- •2.2. Методы зарядки частиц
- •2.2.1. Ионная зарядка
- •«Ударная» зарядка частиц в электрическом поле
- •«Диффузионная» зарядка частиц
- •2.2.2. Индукционная зарядка частиц
- •2.2.3. Статическая электризация
- •2.3. Движение частиц в электрическом поле
- •Движение частицы в однородном электрическом поле
- •2.4. Коллективные процессы в заряженном аэрозоле
- •2.5. Разделение неоднородных систем в электрофильтрах.
- •2 Коронирующие электроды
- •1 Осадительные электроды; 2 коронирующие электроды
- •2.6. Нанесение покрытий в электрическом поле
- •2.6.1. Электроокраска
- •2.6.2. Нанесение порошковых покрытий
- •2.7. Электросепарация
- •2.7.1. Классификация сепараторов
- •2.7.2. Сепарация по электропроводности
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Некоронирующий высоковольтный электрод, 4 приемник для непроводящих
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Коронирующий высоковольтный электрод, 4 приемник для непроводящих
- •1 Дозатор, 2 пластинчатый наклонный (осадительный) электрод,
- •3 Коронирующий электрод, 4 отклоняющий электрод,
- •5 Дополнительный отклоняющий электрод, 6 приемник.
- •2.7.3. Трибоэлектростатическая сепарация
- •1 Транспортер с проводящей заземленной лентой, 2 ванна с пористой
- •6 Приемный бункер для концентрата.
- •2.7.4. Пироэлектрическая сепарация
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Электронагреватели, 4 приемник для электризующихся частиц кристаллов I,
- •2.7.5. Диэлектрическая сепарация
- •1 Диэлектрические плоскости, 2 провода в пазах, 3 силовые линии,
- •Глава 3. Электротехнологии и электротехнологические установки с применением плазмохимических реакций
- •3.1. Генераторы озона и озонные технологии
- •3.1.1. Физико-химические и биологические свойства озона
- •3.1.2. Основные способы получения озона
- •1, 3 Электроды; 2 диэлектрический барьер; 4 зона разряда
- •1 Наружный электрод; 2 барьер из стеклоэмали; 3 внутренний электрод.
- •3.1.3 Технологическое применение озона
- •3.1.4. Математическое описание бактерицидного эффекта озона в процессе электроантисептирования
- •3.2. Электротехнологии конверсии газов в плазме газового разряда
- •3.3. Модификация поверхности материалов в плазме газового разряда
- •Глава 4. Импульсные электротехнологии
- •4.1. Электрогидравлическая технология
- •4.1.1.Технологические применения разряда в жидкости
- •4.2. Электроэрозионная обработка материалов
- •4.2.1. Электроэрозионные установки
- •6 Пузырьки пара или газа; 7 твердые частицы; 8 продукты пиролиза
- •1 Анод; 2 катод; 3 канал разряда; 4 рабочая среда; 5 газовый
- •4.2.2. Физические основы электроэрозионной обработки металлов
- •4.3. Магнитно-импульсная обработка материалов
- •4.3.1. Физическая сущность магнитно-импульсной обработки
- •4.3.2. Разновидности магнитно-импульсной обработки
- •4.3.3. Генераторы токов для магнитно-импульсной обработки
- •4.3.4. Технологические особенности
- •Глава 5. Аэрозольные электрогазодинамические
- •5.1.Общая характеристика
- •5.2. Конденсационные элетрогазодинамические генераторы
- •5.3. Элетрогазодинамические генераторы
- •2 Газовый поток; 3 коронирующий электрод зарядного устройства;
- •4 Заземленный электрод-сетка; 5 коллектор; Rн – нагрузка.
- •5.4. Элетрогазодинамические компрессоры
- •2 Стенка с иглами; 3 заземленный электрод-сетка; 4 ионы или заряженные
- •Глава 6. Технологические лазеры
- •6.1. Физическая модель лазерной обработки
- •6.1.1.Феноменологический (теплофизический) подход к лазерному
- •6.2. Основные параметры технологических лазеров
- •6.3. Характеристики «качества» излучения технологических лазеров
- •6.3.1.Когерентность лазерного излучения
- •6.3.2. Монохроматичность излучения
- •6.3.3. Поляризация излучения
- •6.4. Параметры технологических лазеров
- •6.5. Перспективы развития и основные области применения технологических лазеров
- •6.5.1. Перспективы развития технологических лазеров
- •6.5.2. Основные области применения технологических лазеров
- •6.6. Устройство и принцип действия газового (co2), твердотелого и полупроводникового лазеров (nd-yag)
- •6.6.1. Газовые лазеры
- •6.6.2.Твердотельные лазеры
- •6.6.3. Полупроводниковые лазеры
- •6.6.4. Волоконные лазеры
- •6.7. Принцип действия инжекционных лазеров
- •6.7.1. Усиление и генерация света в активных средах
- •6.7.2. Конструкция и работа инжекционных лазеров
- •6.7.3. Порог генерации и кпд инжекционных лазеров
- •Глава 1. М е м б р а н н ы е э л е к т р от е х н ол о г и и ..................6
- •Глава 2. Электротехнологии и электротехнологические
- •Глава 3. Электротехнологии
- •Глава 6. Технологические лазеры……………………………...184
4.1.1.Технологические применения разряда в жидкости
Как уже отмечалось, технологии с применением электрического разряда в жидкости относятся к высокоскоростным. Этим и определяется их преимущество.
Можно назвать ряд технологических процессов, которые либо нашли применение, либо перспективны. Среди них отметим следующие:
Рис. 4.4. Типичные электрогидравлические технологические процессы:
а) штамповка; б) дробление хрупких материалов (щебень, гранит и т.д.);
в) разрушение некондиционных железобетонных изделий;
г) разрушение камней в почках человека
штамповка деталей из труднодеформируемых материалов или сложной конфигурции. Штамповка осуществляется в устройстве, схематично показанном на рис. 4.4,а. Листовая заготовка вместе с матрицей помещается в бак с водой. Над заготовкой размещается электродная система. В результате разряда в жидкости механическое воздействие ударной волны и потоков жидкости на заготовку приводит к ее деформации. Перемещаясь при каждом разряде к матрице на некоторое расстояние, в конце обработки заготовка принимает форму матрицы. Для того, чтобы в процессе обработки заготовка плотно прилегала к матрице, образуя изделие, воздух из пространства между заготовкой и матрицей откачивается. Как видно из рисунка, при электрогидравлической штамповке реализуется экономия на оснастке: для приготовления детали требуется только матрица. Пуансон, необходимый при традиционной штамповке отсутствует.
дробление хрупких материалов (строительных материалов, геологических проб, некондиционного бетона, негабаритов и т.д.) (рис. 4.4,б,в). При этом порция обрабатываемого материала помещается в сосуд, заполняемый водой. В сосуде имеется один (рис. 4.4,б) или несколько (рис. 4.4,в) электродов, с которых развивается разряд на дно камеры или на арматуру разрушаемого железобетона. После серии разрядов бетон разрушается, извлекаются продукты обработки и цикл повторяется.
очистка литья от формовочной земли. При этом удается проводить очистку в формах сложной формы и существенно улучшить условия труда.
очистка поверхностей от окалины, минеральных отложений и т.д.
разрушение камней в почках человека без хирургического вмешательства, путем концентрации ударных волн в требуемом месте. При этом пациент помещается в ванне в водой (рис. 4.4,г). Следящая ка правило рентгеновская система обеспечивает излучение разряда в момент, когда разрушаемый камень оказывается в фокусе концентрирующей системы. Раздробленный камень выводится из организма естественным путем.
активизация нефтяных скважин.
эхолокация водоемов и многие другие.
4.2. Электроэрозионная обработка материалов
4.2.1. Электроэрозионные установки
Под электроэрозионной обработкой понимают обработку металлов с использованием электрической эрозии, возникающей при организации импульсного разряда между обрабатываемой деталью и специальным электродом-инструментом. Электроэрозионная обработка производится с целью придания детали требуемой формы (размерная обработка), упрочнения поверхности или нанесения на нее защитного покрытия.
Принципиальная схема обработки детали на электроэрозионном станке показана на рис.4.5. При обработке используется собственно станок 1 с рабочей ванной 2, в которой находится стол 3 для установки электрода-изделия 4 с перемещением по двум координатам; 5 регулятор подачи электрода-инструмента; 6 источник питания генератор импульсов; 7 система снабжения рабочей жидкостью, состоящая из насосов, фильтров, бака и т.п.; 8 электрод-инструмент.
Рис.4.5. Электроэрозионный станок со вспомогательными устройствами
энергопитания и снабжения рабочей жидкостью
Источник питания 6 преобразует переменный ток промышленной частоты в импульсный с регулируемыми частотой следования импульсов от сотен до сотен тысяч герц, амплитудой от долей до тысяч ампер, скважностью от 1,01 до 510, длительностью импульса от долей до нескольких тысяч микросекунд. Изменением указанных параметров устанавливается технологический режим обработки.
Регулятор 5 подачи осуществляет автоматическое изменение положения одного из электродов с целью поддержания заданного межэлектродного зазора, изменяющегося благодаря эрозии материала электродов.
Система снабжения 7 служит для урегулирования расхода и очистки рабочей жидкости, подаваемой с целью облегчения удаления продуктов процесса и охлаждения непосредственно в межэлектродный промежуток (рабочую зону) и в ванну 2 станка.
Различают два вида электроэрозионной обработки: электроискровую и электроимпульсную.
Электроискровая обработка производится короткими импульсами тока (менее 100 мкс). Условно такие разряды называют искровыми, из чего следует и название обработки.
Электроимпульсная обработка характеризуется более длительными импульсами тока (более 100 мкс), при которых разряд по своим характеристикам приближается к дуговому: с характерными зонами и столбом канала, для которого характерны малые градиенты напряжения.
Принцип реализации электроэрозионной обработки основан на тепловом действии канала разряда на обрабатываемую деталь. В канале разряда, включая приэлектродную зону, за короткое время выделяется энергия, нагревая газовую среду канала (в основном пары металла) до температуры в несколько тысяч градусов. За счет теплопроводности из зоны разряда формируется тепловой поток, который быстро нагревает непосредственно примыкающий к месту разряда металл заготовки, плавит и частично испаряет некоторое количество металла, образуя эрозионную лунку. Для организации разряда с нужными параметрами и эвакуации продуктов эрозии (пара и частиц расплавленного металла) разряд производится в технологической жидкости (керосин, масло, вода).
На рис.4.6 показаны открытая (а) и закрытая (б) рабочие зоны электроэрозионного станка.
Рис.4.6. Схема открытой (а) и закрытой (б) рабочей зоны при пузырь;