
- •Глава 1. М е м б р а н н ы е э л е к т р от е х н ол о г и и
- •1.1.Основы теории электрокинетических и электрокапиллярных явлений в процессах электромембранных технологий
- •1.2. Общее описание электромембранных процессов
- •1.3. Классификация эмп
- •1.4. Требования к ионообменным мембранам
- •1.6. Электродиализ с биполярными мембранами
- •1.7. Мембранный электролиз
- •1.8. Электродеионизация
- •1. 9. Электросорбция
- •1.10. Электрогравитация (электроосаждение)
- •1. 12. Транспортное объединение
- •1.13. Электрофорез
- •Глава 2. Электротехнологии и электротехнологические установки с применением сильных электрических полей
- •2.1. Технологические процессы, основанные на силовом воздействии электрических полей на материалы
- •2.2. Методы зарядки частиц
- •2.2.1. Ионная зарядка
- •«Ударная» зарядка частиц в электрическом поле
- •«Диффузионная» зарядка частиц
- •2.2.2. Индукционная зарядка частиц
- •2.2.3. Статическая электризация
- •2.3. Движение частиц в электрическом поле
- •Движение частицы в однородном электрическом поле
- •2.4. Коллективные процессы в заряженном аэрозоле
- •2.5. Разделение неоднородных систем в электрофильтрах.
- •2 Коронирующие электроды
- •1 Осадительные электроды; 2 коронирующие электроды
- •2.6. Нанесение покрытий в электрическом поле
- •2.6.1. Электроокраска
- •2.6.2. Нанесение порошковых покрытий
- •2.7. Электросепарация
- •2.7.1. Классификация сепараторов
- •2.7.2. Сепарация по электропроводности
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Некоронирующий высоковольтный электрод, 4 приемник для непроводящих
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Коронирующий высоковольтный электрод, 4 приемник для непроводящих
- •1 Дозатор, 2 пластинчатый наклонный (осадительный) электрод,
- •3 Коронирующий электрод, 4 отклоняющий электрод,
- •5 Дополнительный отклоняющий электрод, 6 приемник.
- •2.7.3. Трибоэлектростатическая сепарация
- •1 Транспортер с проводящей заземленной лентой, 2 ванна с пористой
- •6 Приемный бункер для концентрата.
- •2.7.4. Пироэлектрическая сепарация
- •1 Дозатор, 2 металлический заземленный барабан (осадительный электрод),
- •3 Электронагреватели, 4 приемник для электризующихся частиц кристаллов I,
- •2.7.5. Диэлектрическая сепарация
- •1 Диэлектрические плоскости, 2 провода в пазах, 3 силовые линии,
- •Глава 3. Электротехнологии и электротехнологические установки с применением плазмохимических реакций
- •3.1. Генераторы озона и озонные технологии
- •3.1.1. Физико-химические и биологические свойства озона
- •3.1.2. Основные способы получения озона
- •1, 3 Электроды; 2 диэлектрический барьер; 4 зона разряда
- •1 Наружный электрод; 2 барьер из стеклоэмали; 3 внутренний электрод.
- •3.1.3 Технологическое применение озона
- •3.1.4. Математическое описание бактерицидного эффекта озона в процессе электроантисептирования
- •3.2. Электротехнологии конверсии газов в плазме газового разряда
- •3.3. Модификация поверхности материалов в плазме газового разряда
- •Глава 4. Импульсные электротехнологии
- •4.1. Электрогидравлическая технология
- •4.1.1.Технологические применения разряда в жидкости
- •4.2. Электроэрозионная обработка материалов
- •4.2.1. Электроэрозионные установки
- •6 Пузырьки пара или газа; 7 твердые частицы; 8 продукты пиролиза
- •1 Анод; 2 катод; 3 канал разряда; 4 рабочая среда; 5 газовый
- •4.2.2. Физические основы электроэрозионной обработки металлов
- •4.3. Магнитно-импульсная обработка материалов
- •4.3.1. Физическая сущность магнитно-импульсной обработки
- •4.3.2. Разновидности магнитно-импульсной обработки
- •4.3.3. Генераторы токов для магнитно-импульсной обработки
- •4.3.4. Технологические особенности
- •Глава 5. Аэрозольные электрогазодинамические
- •5.1.Общая характеристика
- •5.2. Конденсационные элетрогазодинамические генераторы
- •5.3. Элетрогазодинамические генераторы
- •2 Газовый поток; 3 коронирующий электрод зарядного устройства;
- •4 Заземленный электрод-сетка; 5 коллектор; Rн – нагрузка.
- •5.4. Элетрогазодинамические компрессоры
- •2 Стенка с иглами; 3 заземленный электрод-сетка; 4 ионы или заряженные
- •Глава 6. Технологические лазеры
- •6.1. Физическая модель лазерной обработки
- •6.1.1.Феноменологический (теплофизический) подход к лазерному
- •6.2. Основные параметры технологических лазеров
- •6.3. Характеристики «качества» излучения технологических лазеров
- •6.3.1.Когерентность лазерного излучения
- •6.3.2. Монохроматичность излучения
- •6.3.3. Поляризация излучения
- •6.4. Параметры технологических лазеров
- •6.5. Перспективы развития и основные области применения технологических лазеров
- •6.5.1. Перспективы развития технологических лазеров
- •6.5.2. Основные области применения технологических лазеров
- •6.6. Устройство и принцип действия газового (co2), твердотелого и полупроводникового лазеров (nd-yag)
- •6.6.1. Газовые лазеры
- •6.6.2.Твердотельные лазеры
- •6.6.3. Полупроводниковые лазеры
- •6.6.4. Волоконные лазеры
- •6.7. Принцип действия инжекционных лазеров
- •6.7.1. Усиление и генерация света в активных средах
- •6.7.2. Конструкция и работа инжекционных лазеров
- •6.7.3. Порог генерации и кпд инжекционных лазеров
- •Глава 1. М е м б р а н н ы е э л е к т р от е х н ол о г и и ..................6
- •Глава 2. Электротехнологии и электротехнологические
- •Глава 3. Электротехнологии
- •Глава 6. Технологические лазеры……………………………...184
2.2. Методы зарядки частиц
В настоящее время используются следующие методы зарядки частиц, т.е. сообщения частицам избыточного заряда:
1) ионная зарядка;
2) индукционная зарядка;
3) статическая электризация.
2.2.1. Ионная зарядка
Метод заключается в том, что ионы, движущиеся в газовой среде, например, во внешней зоне коронного разряда, и сталкивающиеся с частицей, осаждаются на ее поверхности. Обратно ионы не могут возвратиться из-за того, что они должны обладать определенной энергией для преодоления потенциального барьера на границе раздела сред. Таким образом, происходит накопление ионов на частице.
Рассмотрим зарядку частицы в электрическом поле с униполярным объемным зарядом. Увеличение заряда частицы определяется количеством ионов, попадающих на частицу в единицу времени:
,
(2.1)
где q заряд частицы; e заряд электрона; f вектор плотности потока ионов; s площадь поверхности частицы, на которую осаждаются ионы.
Поток ионов на частицу определятся движением ионов под действием электрического поля и движением, вызванным диффузией ионов за счет градиента концентрации ионов:
,
(2.2)
где E напряженность электрического поля у поверхности частицы; n, k концентрация и подвижность ионов; D коэффициент диффузии.
Определим, при каких условиях преобладает зарядка частица за счет осаждения ионов под действием электрического поля («ударная» зарядка) и когда преобладает движение ионов под действием диффузионного механизма («диффузионная» зарядка). Из выражения (2.2.) следует, что «диффузионный» механизм преобладает над «ударным» при условии, если Dgradn >> nkE. Предполагая, что у поверхности частицы n = 0, а ее возмущающее воздействие на концентрацию ионов распространяется на расстояние равное 2а, получаем grad n~n0/2a. При атмосферном давлении в соответствии с молекулярно- кинетической теорией газов D ~ 0,025 k. Поэтому можно записать E << 0,025/(2a). Для условий, наблюдаемых в аппаратах электронно-ионной технологии, когда Е ~ (13) кВ/см, получаем, что при размерах частиц 2а << 0,1 мкм преобладает «диффузионный» механизм зарядки частиц. «Ударная» зарядка преобладает в этих условиях для частиц размером 2а >> 1 мкм.
«Ударная» зарядка частиц в электрическом поле
Результирующая напряженность поля у поверхности частицы определяется следующими составляющими: внешним полем Евн, полем поляризации частицы Еп, полем заряда ионов, осевших на частицу, Еq, полем зеркального отображения иона в поверхности частицы Ез:
.
(2.3)
Рис. 2.2. Схема ударной зарядки сферической частицы
Для сферической частицы (рис. 2.2) радиусом а и относительной диэлектрической проницаемостью в воздухе нормальная составляющая внешнего поля с учетом поля поляризации частицы (положительное направление к частице) равна:
,
(2.4)
где
меридиональный угол сферической системы
координат,
коэффициент, учитывающий относительную
диэлектрическую проницаемость частицы.
Напряженность кулоновского поля от заряда частицы, отталкивающего подлетающие ионы, равна
.
(2.5)
Поле зеркального отображения иона действует на малом расстоянии от поверхности частицы, и его можно учесть как увеличение эффективного радиуса частицы, поскольку все ионы, попавшие в пределы зоны действия силы зеркального отображения, захватываются частицей. Для рассматриваемых размеров частиц этим увеличением можно пренебречь.
Подставляя значения напряженностей электрического поля в выражения (5.2) и (5.1), получим:
.
(2.6)
Численные расчеты показывают, что концентрация ионов при движении в электрическом поле в указанных условиях не изменяется вдоль траектории движения ионов. Если на достаточном удалении от частицы эта концентрация равна n0, то она n0 и вдоль поверхности частицы. Следовательно, она может быть вынесена за знак интеграла в формуле (5.6). Интегрирование в (5.6) производится в сферической системе координат по той части поверхности частицы, где поле обеспечивает попадание иона на частицу. Следовательно:
,
(2.7)
где
максимальный заряд частицы.
Очевидно, что в самом начале зарядки частицы (q = 0) ионы осаждаются на всей левой половине частицы (граница ). По мере накопления заряда на частице, благодаря усилению отталкивающего поля область осаждения ионов сокращается (граница смещается влево) вплоть до нуля (граница проходит через точку А). В этом случае зарядка частицы прекращается и частица приобретает максимальный заряд.
Решением дифференциального уравнения (2.7) является выражение (формула Потенье):
,
(2.8)
Для проводящей частицы
можно считать, что
и
.
Тогда:
.
(2.9)
При зарядке частицы в биполярной короне, когда в пространстве, окружающем частицу, наряду с ионами одного знака (например, положительными n+, k+) присутствуют ионы другого знака (отрицательные n, k), поток зарядов на частицу имеет две составляющие: положительную, увеличивающую заряд частицы, и отрицательную, уменьшающую ее заряд.
Предельный заряд в этом случае равен:
,
(2.10)
где v+ = en+k+ и v = enk проводимости, определяемые соответственно положительными и отрицательными зарядами. Из формулы (2.10) видно, что предельный заряд, приобретаемый частицей в поле биполярного коронного разряда, меньше максимального заряда частицы, получаемого при униполярной зарядке qпред < qm.