
- •Give the definition of the stream line, write its differential equation.
- •Give the definition of the stream surface, infinitesimal stream tube.
- •Essence of Eulers method for investigation of fluid motion .
- •Essence of Lagrange method for investigation of fluid motion .
- •Accordance between path line, streamline, Eulers and Lagrange methods for investigation of fluid motion
- •What is the base for obtaining continuity equation?
- •Write integral form of continuity equation and call its members.
- •Write differential form of continuity equation and call its members.
- •Write differential form of continuity equation for steady flow and call its members.
- •Write differential form of continuity equation for incompressible flow and call its members.
- •W rite continuity equation for infinitesimal stream tube, one dimensional flow with finite cross section area and call its members.
- •Which physical values are considered as gas state parameters?
- •Write the gas state equation and call its members.
- •Give the definition of the gas compressibility; which index is used in order to characterize compressibility.
- •Give the definition of the gas viscosity; which index is used in order to characterize viscosity.
- •Write the Newton’s formula for internal friction and call its members.
- •Write formula for calculation Reynolds number (Re). Call its members.
- •Write the formula for calculation the speed of sound using gas temperature; and call its members.
- •How (quality) does change dynamic coefficient of viscosity when temperature of gas changes? The same for liquid.
- •Call physical values whose fields completely describe the phenomenon of flow around the solid body.
- •Which type of thermodynamic process in aerodynamics usually is used ? Call this thermodynamic process, write its formula, call members of this formula.
- •Write formulas for calculation gas parameter relation in flow stagnation point and free stream condition. Call members of these formulas.
- •Give the definition the critical or sonic flow regime.
- •What is critical speed of sound?
- •Write formula for calculation theoretical maximum speed of flow and call its members.
- •What is the velocity factor? What is difference between the velocity factor and Mach number?
- •Write formula for calculation flight Mach number using instrumental measured pressure values.
- •Call the conformity between flight regimes and Mach number values. Subsonic and Supersonic speed
- •Write Gugonio equation, call its members.
- •Name and give definitions of two viscosity flow regimes.
- •Give the definition of the boundary layer.
- •Draw schemes of viscose air flow about solid body surface. Mark main elements of this flow.
- •Relation between which forces does Reynolds number (Re) characterize? Write the formula for Reynolds number calculation, call physical values used in this formula.
- •Relation between which forces does Fruds number (Fr) characterize? Write the formula for Fruds number calculation, call physical values used in this formula.
- •Relation between which forces does Eulers (Eu) number characterize? Write the formula for Eulers number calculation, call physical values used in this formula.
- •Relation between which forces does Mach number (m) characterize? Write the formula for Mach number calculation, call physical values used in this formula.
- •Relation between which forces does Struhal number (St) characterize? Write the formula for Struhal number calculation, call physical values used in this formula.
- •Relation between which forces does turbulance degree (ε) characterize?
Name and give definitions of two viscosity flow regimes.
Flow RegimesAll fluid flow is classified into one of two broad categories or regimes. These two flow regimesare laminar flow and turbulent flow. The flow regime, whether laminar or turbulent, is importantin the design and operation of any fluid system. The amount of fluid friction, which determinesthe amount of energy required to maintain the desired flow, depends upon the mode of flow.This is also an important consideration in certain applications that involve heat transfer to thefluid.
Laminar FlowLaminar flow is also referred to as streamline or viscous flow. These terms are descriptive ofthe flow because, in laminar flow, (1) layers of water flowing over one another at differentspeeds with virtually no mixing between layers, (2) fluid particles move in definite andobservable paths or streamlines, and (3) the flow is characteristic of viscous (thick) fluid or isone in which viscosity of the fluid plays a significant part.
Turbulent FlowTurbulent flow is characterized by the irregular movement of particles of the fluid. There is nodefinite frequency as there is in wave motion. The particles travel in irregular paths with noobservable pattern and no definite layers.
turbulent flow is a flow regime characterized by chaotic and stochastic[citation needed] property changes. This includes low momentum diffusion, high momentum convection, and rapid variation of pressure and velocity in space and time. Nobel Laureate Richard Feynman described turbulence as "the most important unsolved problem of classical physics."[1] Flow in which the kinetic energy dies out due to the action of fluid molecular viscosity is called laminar flow. While there is no theorem relating the non-dimensional Reynolds number (Re) to turbulence, flows at Reynolds numbers larger than 5000 are typically (but not necessarily) turbulent, while those at low Reynolds numbers usually remain laminar. In Poiseuille flow, for example, turbulence can first be sustained if the Reynolds number is larger than a critical value of about 2040; moreover, the turbulence is generally interspersed with laminar flow until a larger Reynolds number of about 3000. In turbulent flow, unsteady vortices appear on many scales and interact with each other. Drag due to boundary layer skin friction increases. The structure and location of boundary layer separation often changes, sometimes resulting in a reduction of overall drag. Although laminar-turbulent transition is not governed by Reynolds number, the same transition occurs if the size of the object is gradually increased, or the viscosity of the fluid is decreased, or if the density of the fluid is increased.
Give the definition of the boundary layer.
In physics and fluid mechanics, a boundary layer is the layer of fluid in the immediate vicinity of a bounding surface where the effects of viscosity are significant. In the Earth's atmosphere, the planetary boundary layer is the air layer near the ground affected by diurnal heat, moisture or momentum transfer to or from the surface. On an aircraft wing the boundary layer is the part of the flow close to the wing, where viscous forces distort the surrounding non-viscous flow. See Reynolds number.
Laminar boundary layers can be loosely classified according to their structure and the circumstances under which they are created. The thin shear layer which develops on an oscillating body is an example of a Stokes boundary layer, while the Blasius boundary layerrefers to the well-known similarity solution near an attached flat plate held in an oncoming unidirectional flow. When a fluid rotates and viscous forces are balanced by the Coriolis effect (rather than convective inertia), an Ekman layer forms. In the theory of heat transfer, a thermal boundary layer occurs. A surface can have multiple types of boundary layer simultaneously.