
- •Потенциальное силовое поле.
- •Свойства потенциального поля.
- •Потенциальная энергия материальной точки.
- •Закон сохранения полной механической энергии.
- •Начало документа
- •17.2. Приведение системы сил инерции твердого тела к простейшему виду
- •Начало документа
- •4. Определение реакций в опорах вращающегося тела
- •Ификация связей
- •В начало лекции
- •В начало лекции
- •В начало лекции
- •Обобщённые координаты
- •3.3. Понятие о степени подвижности механизма
- •0.2. Обобщенные силы. Условие равновесия в обобщенных координатах
- •В начало лекции
- •Для консервативных механических систем необходимым и достаточным условием равновесия является система равенств:
- •Вычисление обобщённых сил
- •18.2. Коэффициент восстановления при ударе
- •Абсолютно упругий удар
- •[Править]Абсолютно неупругий удар
- •3.1. Уравнения относительного движения
- •3.2. Принцип относительности классической механики
- •3.3. Условия относительного покоя. Сила тяжести
- •Динамика.
- •Дифференциальное уравнение движения.
- •Прямолинейное колебание материальной точки.
- •4.1. Масса и центр масс механической системы
- •24.1. Дифференциальные уравнения движения механических систем около устойчивого положения равновесия
- •6.2. Теорема об изменении кинетического момента
- •6.4. Дифференциальное уравнение вращательного движения
- •6.2. Теорема об изменении кинетического момента
- •17 Работа силы. Мощность.
- •6.2. Теорема об изменении кинетического момента
- •Теорема об изменении количества движения
- •6.3. Теорема об изменении кинетического момента
6.2. Теорема об изменении кинетического момента
материальной точки
Продифференцируем по времени соотношение (6.1)
. (6.10)
Учтем, что как векторное произведение коллинеарных векторов, а в соответствии с выражением (1.2) , и из равенства (6.10) получим
.
Таким образом доказана следующая теорема. Производная по времени от кинетического момента материальной точки относительно неподвижного центра равна сумме моментов всех сил, действующих на точку, относительно того же центра:
. (6.11)
Рассмотрим в качестве примера использования данной теоремы движение материальной точки под действием центральной силы, т.е. силы, линия действия которой постоянно проходит через некоторую точку, неподвижную в данной инерциальной системе отсчета. Пусть линия действия центральной силы все время проходит через неподвижную точку О (рис. 6.3), тогда и из соотношения (6.11) следует, что
.
Таким образом, , а поэтому плоскость, проходящая через вектор и центр О, не изменяет своего положения и траектория точки является плоской кривой.
10
10
Теорема об изменении количества движения.
Рассмотрим систему, состоящую из п материальных точек. Составим для этой системы дифференциальные уравнения движения и сложим их почленно. Тогда получим:
.
Последняя сумма по свойству внутренних сил равна нулю. Кроме того,
Окончательно находим:
.
Уравнение выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будем иметь:
Найдем другое выражение теоремы. Пусть в момент количество движения системы равно , а в момент становится равным . Тогда, умножая обе части равенства на dt и интегрируя, получим:
или
так как интегралы, стоящие справа, дают импульсы внешних сил.
Уравнение выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов действующих на систему внешних сил за тот же промежуток времени.
В проекциях на координатные оси будем иметь:
Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как то, подставляя это значение в равенство и учитывая, что , мы получим .
Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм.
Практическая ценность теоремы состоит в том, что она позволяет исключить из рассмотрения наперед неизвестные внутренние силы (например, силы давления друг на друга частиц жидкости).