
- •А. И. Пятунин
- •1. Числовое программное управление (ч п у)
- •1.1. Устройство станков с чпу
- •1.1.1. Движение исполнительных органов станка
- •1.1.2. Системы координат станков с чпу
- •Прямоугольная система координат
- •Полярная система координат
- •Дополнительные поворотные оси координат
- •1.1.3. Направления движения исполнительных органов станков с чпу Координатная система станка с чпу
- •Координатная система заготовки
- •Рекомендуемая система координат заготовки при фрезерной обработке
- •Рекомендуемая система координат заготовки при токарной обработке
- •1.1.4. Положение и обозначение координатных осей в станках с чпу
- •Направления перемещений в станках с чпу
- •1.1.5. Нулевые и исходные точки станков с чпу
- •Нулевая точка станка m
- •Исходная точка станка r
- •Нулевая точка заготовки w
- •Нулевая точка инструмента e
- •Точка cмены инструмента n
- •1.1.6.. Установка нулевой точки заготовки на токарном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на токарном станке с чпу
- •1.1.7. Установка нулевой точки заготовки на фрезерном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на фрезерном станке с чпу
- •Установка нулевой точки заготовки по оси z
- •Установка нулевой точки заготовки по оси X
- •Установка нулевой точки заготовки по оси y
- •1.2. Числовое программное управление станков
- •1.2.1. Траектория движений инструмента
- •1.2.2. Классификации систем чпу
- •2. Программирование обработки на станках с чпу
- •2.1. Основы программирования
- •2.1.1.Составные элементы управляющей программы
- •2.1.2. Кадр управляющей программы
- •Структура управляющей программы
- •2.1.3. Кодирование подготовительных и вспомогательных функций
- •2.2. Технологическая подготовка производства для станков с чпу
- •2.2.1. Особенности проектирования операций для станков чпу
- •2.2.2. Фрезерная обработка на станках с чпу
- •2.2.3. Токарная обработка на станках с чпу
- •2.3. Способы и технические средства подготовки управляющих программ
- •Составление управляющих программ в цехе
- •Составление управляющих программ в специализированном подразделении по программированию
- •Составление управляющих программ в конструкторско-технологическом подразделении
- •Процедура ручного составления управляющих программ
- •3. Автоматизации разработки управляющих программ
- •3.1. Системы автоматизации программирования (сап)
- •3.2. Примеры отечественных сап
- •3.2.1. Система t-flex чпу для станков с чпу
- •Штамповка
- •Обработка кулачков
- •Ремонт и модернизация оборудования с чпу
- •Основные виды сотрудничества с Заказчиками
- •Список типового модернизированного оборудования
- •3.2.2. Программы t-flex nc Tracer для станков с чпу Основные возможности
- •Архитектура системы
- •3.2.3. Система автоматизации программирования - «компас-чпу»
- •4. Разработка технологии, моделирование и подготовка управляющих программ (уп) в adem cam
- •4.1. Интерфейс модуля adem cam 7.0
- •4.1.1. Рабочий стол adem cam 7.0
- •4.1.2. Панели управления adem cam 7.0
- •Чтобы временно исключить технологический объект:
- •Обмен информацией с другими системами (передача файлов)
- •4.2. Создание конструктивных элементов
- •4.2.1. Конструктивные элементы для фрезерных работ Конструктивный элемент “Колодец”
- •Параметры кэ Колодец
- •Параметры дна. Adem cam позволяет Вам задавать следующие параметры дна колодца:
- •Контуры кэ Колодец
- •Параметры контуров
- •Положение материала
- •. Конструктивный элемент “Стенка”
- •Конструктивный элемент “Окно”
- •Конструктивный элемент “Плоскость”
- •Конструктивный элемент “Паз”
- •. Конструктивный элемент «Поверхность»
- •Максимальная и минимальная координаты z
- •Плоскость холостых ходов
- •Конструктивный элемент “Отверстие”
- •Для оптимизации перемещений инструмента:
- •4.2.3. Конструктивные элементы для токарных работ Конструктивный элемент “Торец”
- •Конструктивный элемент “Область”
- •Параметры кэ Область
- •Конструктивный элемент “Резьба”
- •Параметры кэ “Резьба”
- •Задание начальной координаты X
- •Для задания начального диаметра резьбы нажмите кнопку d нач. И укажите начальную точку на экране. Y координата этой точки будет являться диаметром резьбы. Вы можете указать только существующий узел.
- •4.3. Создание технологических переходов
- •4.3.1. Фрезерные переходы
- •Рассмотрим некоторые из них.
- •4.3.1.1. Технологический переход "Фрезеровать 2.5x"
- •Закладка Параметры технологического перехода "Фрезеровать 2.5x"
- •Закладка Дополнительные параметры тп "Фрезеровать 2.5x"
- •Обработка по z
- •Закладка Подход/Отход
- •Отход. Выберите тип отхода из списка и задайте параметры отхода.
- •4.3.1.2. Технологический переход "Фрезеровать 3x"
- •Закладка Параметры технологического перехода "Фрезеровать 3x"
- •Закладка Дополнительные параметры технологического перехода "Фрезеровать 3x"
- •Фрезерные переходы - параметры инструмента
- •Тип инструмента
- •Корректоры
- •Диаметр и радиус
- •Позиция
- •4.3.2.1. Технологический переход «Точить»
- •Закладка Параметры тп “Точить
- •Закладка Дополнительные параметры тп “Точить”
- •Закладка Инструмент
- •4.3.2.2. Технологический переход «Расточить (Токарный)»
- •Закладка Параметры технологического перехода «Расточить (Токарный)»
- •4.4. Формирование технологических команд
- •Технологическая команда «Инструмент»
- •Тип инструмента. Различные типы технологических переходов требуют инструмент различного типа. Например, для выполнения перехода Фрезеровать необходим инструмент фреза, для перехода Пробить — пуансон.
- •Технологическая команда «Безопасная позиция»
- •Технологическая команда «Плоскость холостых ходов»
- •Параметры плоскости холостых ходов
- •Технологические команды “Стоп” и “Останов”
- •Технологическая команда «Отвод»
- •Технологическая команда «Аппроксимация»
- •Технологическая команда «Поворот»
- •. Технологическая команда «Комментарий»
- •Технологическая команда «Вызов подпрограмм»
- •Технологическая команда «Вызов цикла»
- •Технологическая команда «Команда пользователя»
- •Технологическая команда «Ручной ввод»
- •Формирование технологической команды «Ручной ввод»
- •Технологическая команда «Контрольная точка»
- •Формирование технологической команды «Ручной ввод»
- •4.5. Управление и редактирование то
- •4.6. Расчет и моделирование обработки
- •Расчет траектории движения инструмента
- •Генерация управляющей программы
- •Моделирование обработки
- •Плоское моделирование обработки
- •Объемное моделирование обработки
- •4.7. Выбор заготовки
- •Для задания заготовки:
- •Задание заготовки при помощи координат для фрезерной обработки
- •Задание заготовки при помощи контура для токарной обработки
- •Литература
- •Техтран - система программирования оборудования с чпу/ а.А. Алферов, о.Ю. Батунер, м.Ю. Блюдзе и др. – л.: Машиностроение, Ленингр. Отд., 1987
- •Приложения
- •Приложение №2 – Подготовительные и вспомогательные функции
- •Подготовительные функции
- •Вспомогательные функции
- •М00 Остановка программы
- •Приложение №3 – Подготовительные и вспомогательные функции системы управления ge Fanuc 21t (Токарная)
- •Приложение №4 – Просмотр файла cldata Для просмотра файла cldata нажмите кнопку – Просмотр cldata на панели «Постпроцессор». Ниже показан пример такого файла.
- •Приложение №5 – Просмотр Управляющей Программы
Нулевая точка станка m
Нулевая точка станка M является исходной точкой системы координат, относящейся к данному станку. Положение этой точки на станке устанавливается производителем и не подлежит изменению. Обычно точку М совмещают с базовой точкой исполнительного органа, несущего заготовку, находящегося в положении, при котором все перемещения исполнительных органов будут находиться в области положительных значений координат.
Как правило, у токарных станков точка М располагается на оси вращения шпинделя на его базовом торце; у вертикально-фрезерных станков – на левом углу рабочего стола с лицевой стороны станка.
А) Б)
Рис. 1.15.. Расположение нулевых точек на токарном (А)
и на вертикально-фрезерном (Б) станке с ЧПУ
Исходная точка станка r
Исходная точка станка R используется для контроля над перемещениями исполнительных органов станка при отсчете перемещений в приращениях (в относительной системе координат). Координаты точки R имеют постоянное значение относительно точки М, при этом положение точки R по каждой оси координат фиксируется датчиком и учитывается управляющей программой. С помощью точки R устанавливается связь между нулевой точкой станка М и точкой автоматического выхода в нуль следящих приводов подач после каждого включения и выключения питания на станке. После включения питания на станке для калибровки системы отсчета относительных перемещений необходимо по каждой оси координат вывести исполнительные органы в точку R.
Нулевая точка заготовки w
Нулевая точка заготовки W является началом системы координат заготовки. Ее расположение в системе координат станка назначается свободно, исходя из особенностей процесса обработки данной заготовки. Из практических соображений обычно стремятся к совмещению точки W с началом отсчета размеров на чертеже. В этом случае при составлении управляющей программы можно использовать размерные данные непосредственно с чертежа.
Например, при токарной обработке (рис. 1.16) точку W, как правило, назначают по оси вращения шпинделя по левому или правому торцу заготовки (в зависимости от относительного расположения инструмента). Расположение точки W в процессе обработки одной заготовки может меняться, если, например, заготовка обрабатывается с двух сторон.
Рис. 1.16. Расположение нулевой точки заготовки при работе на токарном станке с ЧПУ
Рис. 1.17.. Расположение нулевой точки заготовки при работе на фрезерном станке с ЧПУ |
На чертежах фрезерных деталей за базу при простановке размеров обычно принимается один из углов ее наружного контура. Этот же угол рекомендуется выбирать для назначения нулевой точки заготовки W при составлении управляющей программы для фрезерной обработки (см. рис. 1.17).
|
Нулевая точка инструмента e
Нулевая точка инструмента Е является базовой точкой элемента станка, несущего державку с инструментом. Положение этой точки на станке устанавливается производителем и не подлежит изменению. Обычно нулевая точка инструмента располагается:
у токарных станков – на пересечении оси державки револьверной головки и торца револьверной головки;
у фрезерных станков – на пересечении оси шпинделя и его торца.
При проведении наладки станка расположение вершины режущей части закрепленного в державке инструмента должно быть точно измерено или выставлено относительно нулевой точки инструмента. Вершина режущей части инструмента характеризуется радиусом закругления R и координатами расположения теоретической вершины P в координатной системе инструмента. Настройка инструмента производится либо на самом станке - обычно при помощи оптической измерительной системы, либо вне станка – при помощи специального приспособления для установки инструментов. При этом если настройка производится на самом станке, то данные измерений координат вершины режущей части инструмента заносятся автоматически в систему ЧПУ станка с помощью клавиш пульта управления.
Специальное приспособление для установки инструментов имеет такое же посадочное место для державки с инструментом и такую же базовую точку для инструмента, что и станок. Инструмент в сборе с державкой устанавливается в данном приспособлении, после чего производится измерение координат вершины режущей части инструмента. Затем данные измерений заносятся вручную в систему ЧПУ станка.
При настройке инструмента вне станка используются еще одна исходная точка, относящаяся к координатной системе инструмента. Это точка установки инструмента В.
Точка установки инструмента В является базовой точкой для инструмента в сборе с державкой (см. рис. 1.19 и рис. 1.20). Она используется в том случае, когда державка с инструментом не установлена на станке, например при наладочных работах вне станка. При установке державки с инструментом на станке точка В, как правило, совмещается с нулевой точкой инструмента Е.
Рис. 1.19. Расположение точки установки инструмента на токарном станке с ЧПУ |
Рис. 1.20. Расположение точки установки инструмента на фрезерном станке с ЧПУ |