
- •А. И. Пятунин
- •1. Числовое программное управление (ч п у)
- •1.1. Устройство станков с чпу
- •1.1.1. Движение исполнительных органов станка
- •1.1.2. Системы координат станков с чпу
- •Прямоугольная система координат
- •Полярная система координат
- •Дополнительные поворотные оси координат
- •1.1.3. Направления движения исполнительных органов станков с чпу Координатная система станка с чпу
- •Координатная система заготовки
- •Рекомендуемая система координат заготовки при фрезерной обработке
- •Рекомендуемая система координат заготовки при токарной обработке
- •1.1.4. Положение и обозначение координатных осей в станках с чпу
- •Направления перемещений в станках с чпу
- •1.1.5. Нулевые и исходные точки станков с чпу
- •Нулевая точка станка m
- •Исходная точка станка r
- •Нулевая точка заготовки w
- •Нулевая точка инструмента e
- •Точка cмены инструмента n
- •1.1.6.. Установка нулевой точки заготовки на токарном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на токарном станке с чпу
- •1.1.7. Установка нулевой точки заготовки на фрезерном станке с чпу
- •Последовательность действий при установке нулевой точки заготовки на фрезерном станке с чпу
- •Установка нулевой точки заготовки по оси z
- •Установка нулевой точки заготовки по оси X
- •Установка нулевой точки заготовки по оси y
- •1.2. Числовое программное управление станков
- •1.2.1. Траектория движений инструмента
- •1.2.2. Классификации систем чпу
- •2. Программирование обработки на станках с чпу
- •2.1. Основы программирования
- •2.1.1.Составные элементы управляющей программы
- •2.1.2. Кадр управляющей программы
- •Структура управляющей программы
- •2.1.3. Кодирование подготовительных и вспомогательных функций
- •2.2. Технологическая подготовка производства для станков с чпу
- •2.2.1. Особенности проектирования операций для станков чпу
- •2.2.2. Фрезерная обработка на станках с чпу
- •2.2.3. Токарная обработка на станках с чпу
- •2.3. Способы и технические средства подготовки управляющих программ
- •Составление управляющих программ в цехе
- •Составление управляющих программ в специализированном подразделении по программированию
- •Составление управляющих программ в конструкторско-технологическом подразделении
- •Процедура ручного составления управляющих программ
- •3. Автоматизации разработки управляющих программ
- •3.1. Системы автоматизации программирования (сап)
- •3.2. Примеры отечественных сап
- •3.2.1. Система t-flex чпу для станков с чпу
- •Штамповка
- •Обработка кулачков
- •Ремонт и модернизация оборудования с чпу
- •Основные виды сотрудничества с Заказчиками
- •Список типового модернизированного оборудования
- •3.2.2. Программы t-flex nc Tracer для станков с чпу Основные возможности
- •Архитектура системы
- •3.2.3. Система автоматизации программирования - «компас-чпу»
- •4. Разработка технологии, моделирование и подготовка управляющих программ (уп) в adem cam
- •4.1. Интерфейс модуля adem cam 7.0
- •4.1.1. Рабочий стол adem cam 7.0
- •4.1.2. Панели управления adem cam 7.0
- •Чтобы временно исключить технологический объект:
- •Обмен информацией с другими системами (передача файлов)
- •4.2. Создание конструктивных элементов
- •4.2.1. Конструктивные элементы для фрезерных работ Конструктивный элемент “Колодец”
- •Параметры кэ Колодец
- •Параметры дна. Adem cam позволяет Вам задавать следующие параметры дна колодца:
- •Контуры кэ Колодец
- •Параметры контуров
- •Положение материала
- •. Конструктивный элемент “Стенка”
- •Конструктивный элемент “Окно”
- •Конструктивный элемент “Плоскость”
- •Конструктивный элемент “Паз”
- •. Конструктивный элемент «Поверхность»
- •Максимальная и минимальная координаты z
- •Плоскость холостых ходов
- •Конструктивный элемент “Отверстие”
- •Для оптимизации перемещений инструмента:
- •4.2.3. Конструктивные элементы для токарных работ Конструктивный элемент “Торец”
- •Конструктивный элемент “Область”
- •Параметры кэ Область
- •Конструктивный элемент “Резьба”
- •Параметры кэ “Резьба”
- •Задание начальной координаты X
- •Для задания начального диаметра резьбы нажмите кнопку d нач. И укажите начальную точку на экране. Y координата этой точки будет являться диаметром резьбы. Вы можете указать только существующий узел.
- •4.3. Создание технологических переходов
- •4.3.1. Фрезерные переходы
- •Рассмотрим некоторые из них.
- •4.3.1.1. Технологический переход "Фрезеровать 2.5x"
- •Закладка Параметры технологического перехода "Фрезеровать 2.5x"
- •Закладка Дополнительные параметры тп "Фрезеровать 2.5x"
- •Обработка по z
- •Закладка Подход/Отход
- •Отход. Выберите тип отхода из списка и задайте параметры отхода.
- •4.3.1.2. Технологический переход "Фрезеровать 3x"
- •Закладка Параметры технологического перехода "Фрезеровать 3x"
- •Закладка Дополнительные параметры технологического перехода "Фрезеровать 3x"
- •Фрезерные переходы - параметры инструмента
- •Тип инструмента
- •Корректоры
- •Диаметр и радиус
- •Позиция
- •4.3.2.1. Технологический переход «Точить»
- •Закладка Параметры тп “Точить
- •Закладка Дополнительные параметры тп “Точить”
- •Закладка Инструмент
- •4.3.2.2. Технологический переход «Расточить (Токарный)»
- •Закладка Параметры технологического перехода «Расточить (Токарный)»
- •4.4. Формирование технологических команд
- •Технологическая команда «Инструмент»
- •Тип инструмента. Различные типы технологических переходов требуют инструмент различного типа. Например, для выполнения перехода Фрезеровать необходим инструмент фреза, для перехода Пробить — пуансон.
- •Технологическая команда «Безопасная позиция»
- •Технологическая команда «Плоскость холостых ходов»
- •Параметры плоскости холостых ходов
- •Технологические команды “Стоп” и “Останов”
- •Технологическая команда «Отвод»
- •Технологическая команда «Аппроксимация»
- •Технологическая команда «Поворот»
- •. Технологическая команда «Комментарий»
- •Технологическая команда «Вызов подпрограмм»
- •Технологическая команда «Вызов цикла»
- •Технологическая команда «Команда пользователя»
- •Технологическая команда «Ручной ввод»
- •Формирование технологической команды «Ручной ввод»
- •Технологическая команда «Контрольная точка»
- •Формирование технологической команды «Ручной ввод»
- •4.5. Управление и редактирование то
- •4.6. Расчет и моделирование обработки
- •Расчет траектории движения инструмента
- •Генерация управляющей программы
- •Моделирование обработки
- •Плоское моделирование обработки
- •Объемное моделирование обработки
- •4.7. Выбор заготовки
- •Для задания заготовки:
- •Задание заготовки при помощи координат для фрезерной обработки
- •Задание заготовки при помощи контура для токарной обработки
- •Литература
- •Техтран - система программирования оборудования с чпу/ а.А. Алферов, о.Ю. Батунер, м.Ю. Блюдзе и др. – л.: Машиностроение, Ленингр. Отд., 1987
- •Приложения
- •Приложение №2 – Подготовительные и вспомогательные функции
- •Подготовительные функции
- •Вспомогательные функции
- •М00 Остановка программы
- •Приложение №3 – Подготовительные и вспомогательные функции системы управления ge Fanuc 21t (Токарная)
- •Приложение №4 – Просмотр файла cldata Для просмотра файла cldata нажмите кнопку – Просмотр cldata на панели «Постпроцессор». Ниже показан пример такого файла.
- •Приложение №5 – Просмотр Управляющей Программы
Электростальский
политехнический институт (филиал)
А. И. Пятунин
САПР управляющих программ
(Автоматизация подготовки управляющих программ
для станков с ЧПУ)
Курс лекций
Электросталь 2006
Содержание
Введение ………………………………………………………………………………….3
1. Числовое программное управление (Ч П У) …………………………………………… 4
1.1. Устройство станков с ЧПУ …………………………………………………………4
1.1.1. Движение исполнительных органов станка ………………………………. 4
1.1.2. Системы координат станков с ЧПУ ……………………………………….5
1.1.3. Направления движения исполнительных органов станков с ЧПУ …...….8
1.1.4. Положение и обозначение координатных осей в станках с ЧПУ ……... 11
1.1.5. Нулевые и исходные точки станков с ЧПУ …………………………..….14
1.1.6.. Установка нулевой точки заготовки на токарном станке с ЧПУ …..…. 17
1.1.7. Установка нулевой точки заготовки на фрезерном станке с ЧПУ …..…19
1.2. Числовое программное управление станков …………………………………..…21
1.2.1. Траектория движений инструмента ……………………………………… 21
1.2.2. Классификации систем ЧПУ ……………………………………………....22
2. Программирование обработки на станках с ЧПУ ………………………………..… 28
2.1. Основы программирования ……………………………………………………..…28
2.1.1.Составные элементы управляющей программы………………………..…28
2.1.2. Кадр управляющей программы…………………………………………….31
2.1.3. Кодирование подготовительных и вспомогательных функций………….34
2.2. Технологическая подготовка производства на станках с ЧПУ ……………..…..35
2.2.1. Особенности проектирования операций для станков ЧПУ……….…..…37
2.2.2. Фрезерная обработка на станках с ЧПУ……………………………..…. 37
2.2.3. Токарная обработка на станках с ЧПУ……………………………….…....38
2.3. Способы и технические средства подготовки управляющих программ …….…42
3. Автоматизации разработки управляющих программ ……………………………….... 46
3.1. Системы автоматизации программирования (САП) ………………………….…46
3.2. Примеры отечественных САП ………………………………………………….…49
4. Разработка технологии, моделирование и подготовка управляющих программ
в системе ADEM CAM……………………………………………………………….…58
4.1. Интерфейс модуля ADEM CAM 7.0…………………………………………… .59
4.1.1. Рабочий стол ADEM CAM 7.0…………………………………………….59
4.1.2. Панели управления ADEM CAM 7.0……………………………………...61
4.2. Создание конструктивных элементов …………………………………………….67
4.2.1. Конструктивные элементы для фрезерных работ. “Колодец”…………..68
4.2.2. Другие конструктивные элементы для фрезерных работ………………..72
4.2.3. Конструктивные элементы для токарных работ………………………….75
4.3. Создание технологических переходов …………………………………………....73
4.3.1. Фрезерные переходы …………………………………………………….....78
4.3.1.1. Технологический переход "Фрезеровать 2.5X"…………………..79
4.3.1.2. Технологический переход "Фрезеровать 3X"…………………….86
4.3.1.3. Параметры инструмента для фрезерных переходов……………...89
4.3.2.. Токарные переходы …………………………………………………….....91
4.3.2.1. Технологический переход «Точить»………………………………92
4.3.2.2. Технологический переход «Расточить (Токарный)»……………..99
4.3.2.3. Технологический переход «Подрезать»………………… ……..101
4.3.2.4. Технологический переход «Отрезать»…………………… ……102
4.3.2.5. Технологический переход «Нарезать резьбу (Токарный)»…… 103
4.4. Формирование технологических команд..…………..…………………………….105
4.5. Управление и редактирование ТО ………………………….……………………..111
4.6. Расчет и моделирование обработки ………………….……….………………......112
Выбор заготовки………………………………………….…….…………………. 118
Литература ……………………………………………………………………………..120
Приложения…………………………………………………………………………….121
Введение
Основным направлением развития технологических процессов в металлообработке в настоящее время является повышение производительности и гибкости. Это объясняется тем, что значительно растет номенклатура деталей в мелко- и среднесерийном производстве, и поэтому необходимо автоматизировать эти производства. Этого можно достигнуть путем широкого применения станков с ЧПУ, в том числе многоцелевых, а также гибких производственных систем (ГПС). Современные достижения микроэлектроники способствуют быстрому развитию этого направления в станкостроении.
Станки с ЧПУ обеспечивают высокую автоматизацию процесса обработки, малые затраты времени на переналадку даже при небольших партиях деталей, и высокое качество обработки этих деталей.
Современные станки с ЧПУ оснащают контурными системами управления, что позволяет обрабатывать профильные поверхности. Значительно возросло число управляемых координат (до шести и более), в результате стало возможным изготовление весьма сложных деталей. Программы обработки у многих станков с ЧПУ составляются прямо у станка, что упрощает их переналадку при переходе на обработку других деталей. Увеличиваются мощности главных приводов и приводов подач, повышается динамическая устойчивость станков. Станки снабжаются устройствами для автоматической смены инструментов и заготовок. Идет процесс оснащения станков датчиками для контроля над технологическим процессом, позволяющим обнаружить неполадки и оптимизировать режимы резания.
На токарных станках обеспечивается контурное управление по четырем координатам; внедряются станки с инструментальными головками, имеющими свой привод. Появление токарных многоцелевых станков обеспечивает изготовление сложных деталей за одну установку.
Применение станков с ЧПУ в сочетании с роботами позволяет обеспечить полностью автоматизированное изготовление деталей в ГПС, управляемые от ЭВМ,.а также организовать обработку деталей по «безлюдной» технологии без участия оператора.
Режущий и вспомогательный инструмент, средства предварительной настройки инструмента вне станка и системы инструментального обеспечения играют важную роль в достижении высокой экономической эффективности дорогостоящего оборудования с ЧПУ.
Техническое перевооружение производства требует разработки многочисленных систем автоматизированного проектирования различных этапов технологической подготовки производства, в первую очередь технологических процессов обработки, затем вытекающих из них этапов проектирования специальных режущих, измерительных, вспомогательных инструментов, приспособлений, а также определения планово – экономических показателей обработки.
Переоснащение машиностроительных заводов новым оборудованием (как настроенными станками, так и станками с ЧПУ, в том числе и управляемых от ЭВМ) поставило перед технологическими службами заводов и институтов задачи автоматизации проектных работ в области ТПП с широким охватом как ранее решенных, так и новых алгоритмов проектирования маршрутных описаний технологических процессов, отдельных операций, операционных описаний процессов (групповых и единичных), инструментов (режущих, измерительных и вспомогательных), приспособлений, станков, роботов и автоматизированных систем управления ими.
К настоящему времени можно отиметить два направления применения средств вычислительной техники в машиностроении: автоматизация производственных процессов и автоматизации инженерного труда. Первое направление – это оборудование с ЧПУ, гибкие производственные комплексы и системы, автоматизированные системы управления технологическими процессами и производством. Второе – САПР для разработки технологических процессов, управляющих программ для оборудования с ЧПУ и др. Это многообразие решаемых задач можно разбить по виду выходного информационного материала на два типа:
машинная печать и тиражирование различной технологической документации в рамках требований ГОСТов, ЕСКД и т. д., то есть чертежей, графиков, различных карт технологических процессов и другой документации, выполненной с разной степенью точности и глубины проработки. Это порождает большое разнообразие разрабатываемых САПР ТПП;
запись управляющих программ на различных программоносителях (картриджи), необходимых для оборудования с ЧПУ, включая и управляемого на ЭВМ, а также непосредственную передачу этих программ на оборудование с ЧПУ.