Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Методи та системи ШІ ЛЕКЦІЯ 5.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
410.11 Кб
Скачать

Методи та системи штучного інтелекту

Лекція 5

Агломеративний ієрархічний

Кластерний аналіз.

5.1. Модель кластерного аналізу відредагувати

Традиційне формулювання задачі кластерного аналізу, як класифікації багатомірних кількісних та якісних даних полягає в наступному.

Нехай – множина об’єктів, яку необхідно розбити на підмножин (кластерів) так, щоб кожен з об’єктів належав лише одному кластеру, причому об’єкти які належать до одного кластера, були “подібними”, а об’єкти які належать до різних кластерів, були “відмінними” між собою, причому саме розбиття повинно задовольняти певним обмеженням і деякому критерію оптимальності.

Для розв’язку цієї задачі розглядають набір (множину) ознак (властивостей, характеристик), якими володіють об’єкти множини . Ознаки можуть бути як кількісними так і якісними. За множиною ознак , кожному об’єкту ставиться у відповідність -мірний вектор (точка) , де – значення -ої ознаки об’єкта . Це дозволяє ототожнити за даним набором ознак множину об’єктів з деякою множиною точок (векторів) -мірного простору. При цьому з рівності випливає, що відповідні елементи і або дійсно ідентичні, або ідентичні за даною множиною ознак .

Поняття схожості об’єктів визначають вибравши деяку функцію , яку називають мірою схожості або подібності. В якості такої міри подібності можна взяти будь-яку функцію , яка ставить у відповідність кожній парі об’єктів і невід’ємне число , яке задовольняє умові: , причому тоді і тільки тоді, коли співпадає з за даною множиною ознак, крім того має місце рівність .

Для визначення міри подібності спочатку вводять поняття відстані між об’єктами і . Для цього вибирають яку-небудь метрику в -мірному просторі, тобто деяку невід’ємну функцію , яка задовольняє наступним умовам:

Відстань між об’єктами і визначають як , де і точки -мірного простору, які ставляться у відповідність об’єктам з допомогою наборів ознак .

Міру подібності між об’єктами можна визначити наступним чином: . Оскільки, будь-яке розбиття множини на кластери зумовлює відповідне розбиття множини на підмножини (і навпаки), то відстань між кластерами

.

Діаметр кластера

.

Сукупність об’єктів , подібних (схожих) до об’єкта , або множина точок , які близькі до точки , визначають як множину або відповідно , де – додатне число, яке називають порогом подібності. Об’єкт вважають подібним до (схожим з) , якщо відстань між цими об’єктами є меншою за поріг подібності . Міру подібності і поріг подібності вибирають з міркувань та представлень про схожість об’єктів множини .

Використовуючи введені поняття, математичну модель задачі кластеризації можна записати в такий спосіб.

Розбити множину на кластери так, щоб

.

Задача багаторівневої ієрархічної кластеризації полягає в тому, що для кожного ( – рівень ієрархії, – кількість таких рівнів) множину необхідно розбити на неперетинні підмножини (кластери) таким чином, щоб діаметри кластерів не перевищували заданих величин (порогів подібності) і при цьому були досягнуті екстремуми деяких цільових функцій .

Об’єкти кластеризації на першому рівні ієрархії – це кластери вихідної множини ; на другому рівні ієрархії – кластери першого рівня; на третьому – кластери другого рівня і т.д. таким чином, кожен об’єкт (кластер) -го рівня представляє собою деяку множину об’єктів (кластерів) ( – 1)-го рівня, тобто .

На кожному рівні ієрархії об’єкти описують різними наборами ознак і схожість об’єктів визначають різними мірами подібності , які вибирають з представлень про схожість об’єктів даного рівня.

Математична модель задачі ієрархічної кластеризації

.

Розв’язок задачі кластеризації суттєво залежить від вибору мір подібності і порогу подібності .