
- •Оглавление
- •Глава 1. Оценивание контролируемых параметров по экспериментальным данным 12
- •Глава 2. Критерий качества задачи оценивания параметра 31
- •Глава 3. Выбор алгоритма обработки экспериментальных данных в автоматизированных системах управления и анализ их свойств 63
- •Глава 4. Формирование модели измерения задачи оценивания по экспериментальным данным 109
- •Глава 5. Формирование модели измерения в задаче оценивания параметра по экспериментальным данным на начальном этапе разработки нового электрооборудования 150
- •Глава 6. Создание устройств формирования модели измерения 176
- •Введение
- •Глава 1. Оценивание контролируемых параметров по экспериментальным данным
- •1.1. Общий анализ этапов структурирования эмпирической информации
- •1.2. Концептуальная модель процесса оценивания контролируемых параметров
- •1.3. Совершенствование алгоритмов обработки экспериментальных данных
- •1.4. Современная концепция оценивания измеряемого параметра
- •1.5. Классификация результатов измерения по характеру оценивания погрешности
- •1.6. Концептуальная модель задачи алгоритмизации оценивания результатов измерения
- •1.7. Ретроспективный анализ этапов развития теории оценивания
- •Контрольные вопросы
- •Глава 2. Критерий качества задачи оценивания параметра
- •2.1. Определение качества задачи оценивания измеряемого параметра
- •2.2. Формирование критерия качества гомоморфной математической модели измерения
- •2.3. Информационная мера степени изоморфности модели
- •2.4. Расчет информационной меры изоморфности
- •2.5. Оценка информационного объема и риска модели измерения
- •2.6. Асимптотическое оценивание пропускной способности математической модели измерения
- •2.7. Асимптотический метод выделения признаков модели измерения
- •Типовые задачи и примеры их решения
- •Контрольные вопросы
- •Глава 3. Выбор алгоритма обработки экспериментальных данных в автоматизированных системах управления и анализ их свойств
- •3.1. Особенности формирования алгоритмов оценивания в автоматизированных системах управления
- •3.2. Общий анализ алгоритмов оценивания по критерию минимума риска
- •3.3. Общий алгоритм оценки измеряемого параметра
- •3.4. Оптимальный одношаговый алгоритм
- •3.5. Модификации алгоритма обработки экспериментальных данных
- •3.6. Моделирование алгоритма обработки экспериментальных данных
- •3.7. Исследование сходимости алгоритма
- •3.8. Определение весовых коэффициентов алгоритма
- •3.9. Определение начальных условий алгоритма Язвинского при оценке результатов измерения
- •Типовые задачи и примеры их решения
- •Контрольные вопросы
- •Глава 4. Формирование модели измерения задачи оценивания по экспериментальным данным
- •4.1. Анализ задачи формирования модели измерения
- •4.2. Принципы построения модели измерения параметра контролируемого объекта
- •4.3. Этапы решения задачи формирования модели измерения
- •4.4. Общая постановка задачи формирования модели измерения
- •4.5. Выбор критерия близости
- •4.6. Способы преобразования переменных модели измерения
- •4.7. Общий анализ формирования модели контролируемого объекта
- •4.8. Решение задачи формирования модели контролируемого объекта
- •4.9. Оптимизация алфавита классов и словаря признаков
- •4.10. Взаимосвязь размерности алфавита классов и качества и эффективности модели измерения
- •4.11. Взаимосвязь размерности вектора признаков и вероятности правильности формирования модели измерения
- •4.12. Формализация задачи оптимального взаимосвязанного выбора алфавита классов и словаря признаков
- •4.13. Формирование оптимального алфавита классов и словаря признаков в условиях ограничений
- •Контрольные вопросы
- •Глава 5. Формирование модели измерения в задаче оценивания параметра по экспериментальным данным на начальном этапе разработки нового электрооборудования
- •5.1. Исследование условий формирования модели измерения задачи оценивания измеряемого параметра
- •5.2. Геометрический способ формирования модели измерения
- •5.3. Лингвистический алгоритм формирования модели измерения на начальных этапах оценивания
- •5.4. Обоснование выбора критерия расхождения для формирования модели измерения по экспериментальным данным
- •5.5. Метод формирования модели измерения
- •5.7. Синтез метода и алгоритма формирования стратегии постановки начальных экспериментов
- •Типовые задачи и примеры их решения
- •6. Найденный квант исключается из множества г, т.Е.
- •Контрольные вопросы
- •Глава 6. Создание устройств формирования модели измерения
- •6.1. Состав устройства формирования модели измерения
- •6.2. Общий анализ устройств формирования моделей измерения
- •6.3. Общий анализ моделирования устройств формирования модели измерения
- •6.4. Структура устройства формирования модели измерения
- •6.5. Моделирование контролируемого объекта
- •6.6. Моделирование средств измерения параметров контролируемого объекта
- •6.7. Моделирование каналов измерения
- •Типовые задачи и примеры их решения
- •6.8. Модель алгоритма формирования модели измерения
- •6.9. Модуль оценки качества и эффективности устройства формирования
- •6.10. Модуль управления моделью устройства формирования
- •6.11. Использование принципов опытно-теоретического метода при моделировании устройства формирования
- •6.12. Моделирование в задачах создания и оптимизации устройства формирования
- •Заключение
- •Библиографический список
- •Системы реального времени Синтез алгоритмов оценивания технологического параметра
- •346428, Г. Новочеркасск, ул. Просвещения, 132
Системы реального времени Синтез алгоритмов оценивания технологического параметра
___________________________________________________
Редактор А. А. Галикян
Темплан 2007 г. Подписано в печать 28.08. 2007.
Бумага офсетная. Ризография. Усл. печ. л. 13,25
Уч. изд. л. 13,0. Тираж 500. Заказ.
__________________________________________________________
Южно – Российский государственный технический университет
Редакционно – издательский отдел ЮРГТУ
Типография ЮРГТУ
Адрес университета и типографии
346428, Г. Новочеркасск, ул. Просвещения, 132
1 Структура – это относительно устойчивый способ связи элементов объекта. Элемент – это часть объекта, связанная с другими частями объекта, образующими сам объект.
2 Под принципом целостности понимается невозможность получения объекта из составляющих его элементов без их предварительного упорядочения и интеграции между ними.