
- •Оглавление
- •Глава 1. Оценивание контролируемых параметров по экспериментальным данным 12
- •Глава 2. Критерий качества задачи оценивания параметра 31
- •Глава 3. Выбор алгоритма обработки экспериментальных данных в автоматизированных системах управления и анализ их свойств 63
- •Глава 4. Формирование модели измерения задачи оценивания по экспериментальным данным 109
- •Глава 5. Формирование модели измерения в задаче оценивания параметра по экспериментальным данным на начальном этапе разработки нового электрооборудования 150
- •Глава 6. Создание устройств формирования модели измерения 176
- •Введение
- •Глава 1. Оценивание контролируемых параметров по экспериментальным данным
- •1.1. Общий анализ этапов структурирования эмпирической информации
- •1.2. Концептуальная модель процесса оценивания контролируемых параметров
- •1.3. Совершенствование алгоритмов обработки экспериментальных данных
- •1.4. Современная концепция оценивания измеряемого параметра
- •1.5. Классификация результатов измерения по характеру оценивания погрешности
- •1.6. Концептуальная модель задачи алгоритмизации оценивания результатов измерения
- •1.7. Ретроспективный анализ этапов развития теории оценивания
- •Контрольные вопросы
- •Глава 2. Критерий качества задачи оценивания параметра
- •2.1. Определение качества задачи оценивания измеряемого параметра
- •2.2. Формирование критерия качества гомоморфной математической модели измерения
- •2.3. Информационная мера степени изоморфности модели
- •2.4. Расчет информационной меры изоморфности
- •2.5. Оценка информационного объема и риска модели измерения
- •2.6. Асимптотическое оценивание пропускной способности математической модели измерения
- •2.7. Асимптотический метод выделения признаков модели измерения
- •Типовые задачи и примеры их решения
- •Контрольные вопросы
- •Глава 3. Выбор алгоритма обработки экспериментальных данных в автоматизированных системах управления и анализ их свойств
- •3.1. Особенности формирования алгоритмов оценивания в автоматизированных системах управления
- •3.2. Общий анализ алгоритмов оценивания по критерию минимума риска
- •3.3. Общий алгоритм оценки измеряемого параметра
- •3.4. Оптимальный одношаговый алгоритм
- •3.5. Модификации алгоритма обработки экспериментальных данных
- •3.6. Моделирование алгоритма обработки экспериментальных данных
- •3.7. Исследование сходимости алгоритма
- •3.8. Определение весовых коэффициентов алгоритма
- •3.9. Определение начальных условий алгоритма Язвинского при оценке результатов измерения
- •Типовые задачи и примеры их решения
- •Контрольные вопросы
- •Глава 4. Формирование модели измерения задачи оценивания по экспериментальным данным
- •4.1. Анализ задачи формирования модели измерения
- •4.2. Принципы построения модели измерения параметра контролируемого объекта
- •4.3. Этапы решения задачи формирования модели измерения
- •4.4. Общая постановка задачи формирования модели измерения
- •4.5. Выбор критерия близости
- •4.6. Способы преобразования переменных модели измерения
- •4.7. Общий анализ формирования модели контролируемого объекта
- •4.8. Решение задачи формирования модели контролируемого объекта
- •4.9. Оптимизация алфавита классов и словаря признаков
- •4.10. Взаимосвязь размерности алфавита классов и качества и эффективности модели измерения
- •4.11. Взаимосвязь размерности вектора признаков и вероятности правильности формирования модели измерения
- •4.12. Формализация задачи оптимального взаимосвязанного выбора алфавита классов и словаря признаков
- •4.13. Формирование оптимального алфавита классов и словаря признаков в условиях ограничений
- •Контрольные вопросы
- •Глава 5. Формирование модели измерения в задаче оценивания параметра по экспериментальным данным на начальном этапе разработки нового электрооборудования
- •5.1. Исследование условий формирования модели измерения задачи оценивания измеряемого параметра
- •5.2. Геометрический способ формирования модели измерения
- •5.3. Лингвистический алгоритм формирования модели измерения на начальных этапах оценивания
- •5.4. Обоснование выбора критерия расхождения для формирования модели измерения по экспериментальным данным
- •5.5. Метод формирования модели измерения
- •5.7. Синтез метода и алгоритма формирования стратегии постановки начальных экспериментов
- •Типовые задачи и примеры их решения
- •6. Найденный квант исключается из множества г, т.Е.
- •Контрольные вопросы
- •Глава 6. Создание устройств формирования модели измерения
- •6.1. Состав устройства формирования модели измерения
- •6.2. Общий анализ устройств формирования моделей измерения
- •6.3. Общий анализ моделирования устройств формирования модели измерения
- •6.4. Структура устройства формирования модели измерения
- •6.5. Моделирование контролируемого объекта
- •6.6. Моделирование средств измерения параметров контролируемого объекта
- •6.7. Моделирование каналов измерения
- •Типовые задачи и примеры их решения
- •6.8. Модель алгоритма формирования модели измерения
- •6.9. Модуль оценки качества и эффективности устройства формирования
- •6.10. Модуль управления моделью устройства формирования
- •6.11. Использование принципов опытно-теоретического метода при моделировании устройства формирования
- •6.12. Моделирование в задачах создания и оптимизации устройства формирования
- •Заключение
- •Библиографический список
- •Системы реального времени Синтез алгоритмов оценивания технологического параметра
- •346428, Г. Новочеркасск, ул. Просвещения, 132
Глава 5. Формирование модели измерения в задаче оценивания параметра по экспериментальным данным на начальном этапе разработки нового электрооборудования
5.1. Исследование условий формирования модели измерения задачи оценивания измеряемого параметра
Общий анализ задачи формирования модели измерения, приведенный в §4.1, показал специфичность начального этапа формирования модели измерения в условиях минимальной априорной информации. Для решения задачи формирования модели измерения при оценивании измеряемого параметра необходимо выделить общее объективное свойство, характерное модели измерения и позволяющее идентифицировать ее признаки. Данное объективное свойство моделей не должно зависеть от природы признаков, а должно определять лишь их склонность к разделимости. Определение данного объективного свойства моделей позволит наряду с классической задачей обучения распознаванию, с использованием информации о принадлежности каждого объекта из обучающей последовательности тому или иному образу, поставить задачу обучения без учителя.
Если предположить, что результаты измерения, входящие в область значений пространства признаков, формируются исходя из искомой модели измерения, то можно принять, что задание пространства признаков само по себе задает свойство, под действием которого область значений модели измерения в этом пространстве легко разделяется, т.е. взаимное расположение точек в выбранном пространстве уже содержит информацию о том, как следует разделить это множество. Эта информация и определяет то объективное свойство разделимости переменных синтезируемой модели измерения, которое оказывается достаточным для ее формирования. Данное условие формирования модели измерения можно сформулировать в виде гипотезы компактности, которая гласит: модели измерения соответствуют компактные множества, составляющие область ее значений в пространстве признаков.
Поскольку координаты пространства, образованного результатами измерений, являются случайными величинами, то и признаки моделей измерения по результатам наблюдения в нем будут распределены случайно. В этом абстрактном пространстве почти наверняка будут существовать компактные множества точек. Поэтому в соответствии с гипотезой компактности множества моделей, которым в абстрактном пространстве соответствуют компактные множества точек, разумно назвать абстрактными моделями данного пространства в отличие от реальной модели измерения. При этом выбор исходного описания элементов является одной из центральных задач проблемы формирования модели. При удачном выборе исходного описания пространства признаков задача формирования может оказаться тривиальной и, наоборот, неудачно выбранное исходное описание может привести либо к очень сложной дальнейшей переработке информации, либо вообще к отсутствию решения. Однако это не снижает, а иногда и повышает ценность алгоритмов формирования, так как часто сами модели заранее никем не определены, а задача состоит в том, чтобы определить, какие подмножества области значений в заданном пространстве представляют собой модели, т.е. алгоритм самоформирования модели характеризует пригодность выбранного пространства для конкретной задачи оценивания результатов измерения.
Таким образом, способность восприятия внешнего мира в форме моделей позволяет с определенной достоверностью идентифицировать бесконечное число моделей измерения по конечному числу результатов измерения, а объективный характер основного свойства моделей позволяет моделировать процесс их формирования.