
- •Введение
- •Глава 1. Основные принципы организации операционных систем реального времени
- •1.1. Общие положения и определения
- •1.2. Отличие механизма современных осрв
- •1.3. Параметры осрв
- •1.4. Программное обеспечение многозадачности ос
- •1.5. Архитектура осрв. Классы осрв
- •1.6. Синхронизация задач
- •1.7. Базовые понятия программного обеспечения реального времени
- •1.8. Асинхронный обмен данными
- •1.9. Надежность систем реального времени
- •1.10. Планирование задач
- •1.11. Планирование периодических процессов
- •1.12. Взаимоблокировки
- •Контрольные вопросы
- •Глава 2. Типовые операционные системы реального времени
- •2.1. Обзор систем реального времени
- •2.2. Операционная система Windows nt
- •2.2.1. Ужесточение требований к ос 90-х годов
- •2.2.2. Операционные системы реального времени и Windows nt
- •2.2.3. Процессы и потоки nt
- •2.2.4. Пути расширения реального времени для nt
- •2.2.5. Обработка прерываний и исключений
- •2.2.6. Особенности системы ввода/вывода системы nt
- •2.2.7. Windows nt как операционная система реального времени
- •2.2.8. Расширения Windows nt
- •2.3. Операционная система qnx
- •2.3.1. Общие положения
- •2.3.2. Системная архитектура qnx
- •2.3.3. Qnx как сеть
- •2.3.5. Оконная система Photon microGui
- •2.3.6. Phocus 4 для создания встраиваемых scada
- •2.4. Операционные системы реального времени для встраеваемых систем
- •2.5. Ос рв для встраиваемых модулей от компании Microsoft
- •2.6. Функциональные потребности scada-системы
- •Контрольные вопросы
- •Глава 3. Общий анализ контроллеров
- •3.1. Аппаратное обеспечение
- •3.2. Программирование plc
- •3.3. Выбор контроллерных средств
- •3.4. Классификация современных контроллеров
- •3.5. Взаимодействие компонентов
- •3.6. Проектирование распределенных систем управления
- •3.7. Открытая модульная архитектура контроллеров
- •3.8. Архитектура производственной базы данных реального времени
- •3.9. Эволюция стандарта pci для жестких встраиваемых приложений
- •3.11. Одно- и многоуровневые системы диспетчерского контроля и управления
- •3.12. Технологии и протоколы передачи данных в промышленности: Industrial Ethernet
- •3.13. Обеспечение надежности асу тп с использованием резервированного кольца Turbo Ring
- •3.14. Анализ архитектур контроллеров с параллельной шиной
- •3.15. Повышенные требования к устойчивости функционирования
- •Контрольные вопросы
- •Глава 4. Примеры реализации типовых контроллеров
- •4.1. Промышленные контроллеры для автоматизации технологических процессов
- •4.2. Модули adam-8000 от компании Advantech9 и система программирования adam-winplc7
- •4.3. LabView Real-Time LabView реального времени
- •4.4. Встраиваемые системы и ос для них
- •4.5. Промышленный контроллер р-130isa
- •4.6. Совместное использование hmi и pac
- •4.7. Система Реального Времени cf-mntr
- •4.8. Экономичные контроллеры Pico
- •4.9. RapidIo: технология для приложений реального времени
- •4.10. Trace mode 6 и t-factory 6: обзор исполнительных модулей
- •4.11. Контроллер Crestron cp2e
- •4.12. Асу тп на базе контроллеров micro-pc
- •4.14. Itv ndc-f18 – универсальные контроллеры ndc-f18
- •4.15. Сетевой контроллер компании Lenel для систем контроля доступа
- •4.16. Сетевой контроллер реального времени
- •Контрольные вопросы
- •Глава 5. Мультимедийные системы реального времени
- •5.1. Требования реального времени в системах мультимедиа
- •5.2. Требования к архитектуре мультимедиа-систем
- •5.3. Объединение графического и мультимедийного ядра в систему Freescale
- •5.5. Scsa: архитектура для систем мультимедиа реального времени
- •Контрольные вопросы
- •Заключение
- •Рекомендуемый библиографический список
- •Оглавление
- •Глава 1. Основные принципы организации операционных систем реального времени 6
- •Глава 2. Типовые операционные системы реального времени 55
- •Глава 3. Общий анализ контроллеров 179
- •Глава 4. Примеры реализации типовых контроллеров 236
- •Глава 5. Мультимедийные системы реального времени 292
- •Системы реального времени Программно-технический комплекс
- •346428, Г. Новочеркасск, ул. Просвещения, 132
3.14. Анализ архитектур контроллеров с параллельной шиной
Основные свойства большинства классических контроллеров:
классический контроллер образуется набором модулей, установленных в каркас (крейт) и объединенных традиционной параллельной шиной;
контроллер имеет один (очень редко несколько) модуль центрального процессора, взаимодействующего с остальными модулями контроллера через параллельную шину;
остальные модули выполняют в контроллере функции устройств сопряжения с объектом (УСО) или другие вспомогательные функции;
все модули, кроме процессорного, не являются интеллектуальными;
взаимодействие между модулями осуществляется на уровне циклов обращений микропроцессора к внутренним регистрам и ячейкам памяти модулей;
взаимодействие по параллельной шине характеризуется высокими скоростями передачи;
относительно высокое число каналов в контроллере.
Объем ФУ составляет в среднем порядка 50 каналов. Модульность позволяет скомпоновать контроллеры с необходимым объемом каналов и процессорной производительностью, развитые сетевые средства без труда позволяют объединить их в единую систему и т.д., но при практической реализации возникают некоторые проблемы:
1. Для традиционных универсальных контроллеров число каналов, равное 50, не оптимально с точки зрения стоимости. Обычно они обслуживают несколько сотен каналов, тогда стоимость общесистемной части контроллера (крейта, источников питания, процессорного модуля и т.д.) распределяется по большому числу каналов и вклад системной части в среднюю стоимость канала минимален. Поэтому, если объем каналов в традиционном контроллере уменьшить до требуемого (в среднем 50 каналов), то средняя стоимость канала и системы в целом возрастет более чем в два раза.
2. Можно попытаться использовать более простые и соответственно дешевые традиционные контроллеры с меньшим числом каналов, например PLC-контроллеры, но тогда вы имеете ряд ограничений по функциональным возможностям, производительности процессора и т.д., которые сделают невозможным решение сложных или нестандартных задач.
Таким образом, в обоих случаях возникают несоответствия, приводящие либо к существенному увеличению стоимости контроллерного оборудования в системе из-за дорогостоящей общесистемной части, не позволяющей масштабировать контроллеры в широком диапазоне обслуживаемых каналов, либо к существенному ограничению функциональных возможностей контроллеров. Традиционные контроллеры с параллельной шиной не имеют каких–либо архитектурных решений, повышающих их надежность. Их надежность обеспечивается за счет высокого качества производства электронного оборудования. С архитектурной точки зрения, параллельная шина является центральным системным элементом с крайне высокой потенциальной ненадежностью. Она содержит десятки сигналов, к которым подключаются все модули контроллера своими активными интерфейсными элементами (шинными приемо-передатчиками). Отказ любого элемента, при котором нарушатся электрические характеристики хотя бы одного сигнала, приводит к выходу из строя всего контроллера. При этом практически невозможно диагностировать такую неисправность, так как при подобном отказе полностью нарушается функционирование контроллера.