
- •Введение
- •Глава 1. Основные принципы организации операционных систем реального времени
- •1.1. Общие положения и определения
- •1.2. Отличие механизма современных осрв
- •1.3. Параметры осрв
- •1.4. Программное обеспечение многозадачности ос
- •1.5. Архитектура осрв. Классы осрв
- •1.6. Синхронизация задач
- •1.7. Базовые понятия программного обеспечения реального времени
- •1.8. Асинхронный обмен данными
- •1.9. Надежность систем реального времени
- •1.10. Планирование задач
- •1.11. Планирование периодических процессов
- •1.12. Взаимоблокировки
- •Контрольные вопросы
- •Глава 2. Типовые операционные системы реального времени
- •2.1. Обзор систем реального времени
- •2.2. Операционная система Windows nt
- •2.2.1. Ужесточение требований к ос 90-х годов
- •2.2.2. Операционные системы реального времени и Windows nt
- •2.2.3. Процессы и потоки nt
- •2.2.4. Пути расширения реального времени для nt
- •2.2.5. Обработка прерываний и исключений
- •2.2.6. Особенности системы ввода/вывода системы nt
- •2.2.7. Windows nt как операционная система реального времени
- •2.2.8. Расширения Windows nt
- •2.3. Операционная система qnx
- •2.3.1. Общие положения
- •2.3.2. Системная архитектура qnx
- •2.3.3. Qnx как сеть
- •2.3.5. Оконная система Photon microGui
- •2.3.6. Phocus 4 для создания встраиваемых scada
- •2.4. Операционные системы реального времени для встраеваемых систем
- •2.5. Ос рв для встраиваемых модулей от компании Microsoft
- •2.6. Функциональные потребности scada-системы
- •Контрольные вопросы
- •Глава 3. Общий анализ контроллеров
- •3.1. Аппаратное обеспечение
- •3.2. Программирование plc
- •3.3. Выбор контроллерных средств
- •3.4. Классификация современных контроллеров
- •3.5. Взаимодействие компонентов
- •3.6. Проектирование распределенных систем управления
- •3.7. Открытая модульная архитектура контроллеров
- •3.8. Архитектура производственной базы данных реального времени
- •3.9. Эволюция стандарта pci для жестких встраиваемых приложений
- •3.11. Одно- и многоуровневые системы диспетчерского контроля и управления
- •3.12. Технологии и протоколы передачи данных в промышленности: Industrial Ethernet
- •3.13. Обеспечение надежности асу тп с использованием резервированного кольца Turbo Ring
- •3.14. Анализ архитектур контроллеров с параллельной шиной
- •3.15. Повышенные требования к устойчивости функционирования
- •Контрольные вопросы
- •Глава 4. Примеры реализации типовых контроллеров
- •4.1. Промышленные контроллеры для автоматизации технологических процессов
- •4.2. Модули adam-8000 от компании Advantech9 и система программирования adam-winplc7
- •4.3. LabView Real-Time LabView реального времени
- •4.4. Встраиваемые системы и ос для них
- •4.5. Промышленный контроллер р-130isa
- •4.6. Совместное использование hmi и pac
- •4.7. Система Реального Времени cf-mntr
- •4.8. Экономичные контроллеры Pico
- •4.9. RapidIo: технология для приложений реального времени
- •4.10. Trace mode 6 и t-factory 6: обзор исполнительных модулей
- •4.11. Контроллер Crestron cp2e
- •4.12. Асу тп на базе контроллеров micro-pc
- •4.14. Itv ndc-f18 – универсальные контроллеры ndc-f18
- •4.15. Сетевой контроллер компании Lenel для систем контроля доступа
- •4.16. Сетевой контроллер реального времени
- •Контрольные вопросы
- •Глава 5. Мультимедийные системы реального времени
- •5.1. Требования реального времени в системах мультимедиа
- •5.2. Требования к архитектуре мультимедиа-систем
- •5.3. Объединение графического и мультимедийного ядра в систему Freescale
- •5.5. Scsa: архитектура для систем мультимедиа реального времени
- •Контрольные вопросы
- •Заключение
- •Рекомендуемый библиографический список
- •Оглавление
- •Глава 1. Основные принципы организации операционных систем реального времени 6
- •Глава 2. Типовые операционные системы реального времени 55
- •Глава 3. Общий анализ контроллеров 179
- •Глава 4. Примеры реализации типовых контроллеров 236
- •Глава 5. Мультимедийные системы реального времени 292
- •Системы реального времени Программно-технический комплекс
- •346428, Г. Новочеркасск, ул. Просвещения, 132
2.6. Функциональные потребности scada-системы
Любая SCADA-система в рабочем режиме мониторинга какого-либо процесса выполняет одновременно множество задач, среди которых: получение данных в РВ от объектов управления; запись данных в архив предыстории; визуализация данных на анимированных мнемосхемах; отображение критических параметров в виде трендов; прием и протоколирование действий оператора, передача его управляющих команд исполнительной системе объекта; генерация и обработка "событий и тревог". Последний пункт включает множество последовательных действий: формирование сообщений о преодолении параметрами пороговых и критических значений; выдача этих сообщений на экран, а также при необходимости их пересылка удаленным операторам; прием подтверждений о получении "событий и тревог" оператором; автоматическая выработка управляющих воздействий в критических ситуациях, например, в отсутствии своевременной реакции оператора или блокирующие его неверные действия. Задача обработки событий и тревог имеет высокий приоритет, поскольку одной из самых важных функций SCADA-системы является предотвращение аварий ТП. Обработка "событий и тревог" является задачей, которая может отнимать весьма большие компьютерные ресурсы, прежде всего, процессорное время. С ростом числа тегов загрузка растет быстрее линейной зависимости, так как при выходе ТП из нормального режима для многих параметров генерируются тревоги. Для MS Windows время, требуемое на переключение между задачами с ростом числа точек и тревог, растет очень резко. С ростом числа тегов SCADA-системы на MS Windows реакция замедляется, и уже в приложениях с числом тегов более тысячи они периодически могут зависать на несколько секунд. Разработчики SCADA пакета Phocus учитывают важные требования обработки событий и тревог, а большое число приоритетов, доступных в ОС РВ QNX, позволяет обрабатывать поступающие тревоги в правильном порядке. Поэтому производительность SCADA-системы Phocus и в приложениях с десятками тысяч тегов остается достаточной для правильной работы без потери данных.
Особенности встроенной SCADA-системы. Повышение производительности встроенных систем способствует тому, что таким системам управления, как PLC, передается все больше функций, которые ранее выполнялись SCADA-системой на выделенном ПК. В PLC передаются функции сбора данных – с целью предотвращения потери данных при обрыве связи или в случае использования коммутируемого канала связи с периодической доставкой данных. Современные PLC предоставляют развитые встроенные функции программирования и отладки технологических программ. Для этого PLC снабжается дисплеем и средствами ввода (клавиатурой, указательным устройством), образуя систему HMI или панельный ПК. Фактически HMI-система – это промышленный компьютер со встроенным экраном, готовый к интеграции функций управления, сбора данных и мониторинга со стороны оператора. Популярность QNX как ОС для контроллеров определяется двумя аппаратными особенностями встроенной системы по сравнению с настольными ПК, продиктованными требованиями по надежности:
менее производительные процессоры, не требующие активного охлаждения вентилятором;
небольшой объем Flash-памяти, которая замещает малонадежные магнитные жесткие диски.
ОС QNX, обладающая высокой производительностью и компактностью кода, как никакая другая ОС, поддерживающая развитой графический интерфейс, способна удовлетворить этим требованиям.
Встроенная SCADA-система, совмещающая функциональность управляющей системы, HMI и собственно SCADA, является сложным мультизадачным приложением с большим числом задач, чем в PLC. Поэтому использование в качестве базовой ОС QNX более оправданно.
Помимо функций, которые выполняют системы HMI, SCADA-системы за счет поддержки полевых шин могут осуществлять распределенный сбор данных, а благодаря развитым коммуникационным средствам верхнего уровня способны взаимодействовать с удаленными операторами и осуществлять двустороннюю передачу данных в различные БД корпоративных приложений.
В Phocus реализована поддержка таких протоколов полевых шин, как Modbus, Profibus, CAN, C-bus и др. Что касается взаимодействия с системами на верхнем уровне, Phocus предлагает целый набор разнообразных средств. Для взаимодействия с системами на базе MS Windows имеются OPC серверы и клиенты для Phocus/OPUS. Сервер OPC Data Access поддерживает доступ к данным РВ по протоколу DA 2.0, сервер OPC Alarms&Events реализует передачу данных тревог/событий по протоколу OPC AE 1.1, а сервер OPC Historical Data Access предоставляет доступ к данным предыстории по протоколу OPC HDA 1.2. Для двустороннего обмена данными с БД в MS Windows для Phocus разработано программное средство PhocusBase, позволяющее сохранить в БД MS SQL и автоматически поддерживать в актуальном состоянии данные (точки, предыстория, тревоги/события), получаемые по сети с сервера Opus/Phocus. В качестве универсального способа передачи данных, доступного из любого Web-браузера, функционирующего на любой платформе, предлагается модуль OpusXML, который обеспечивает удобный способ связи SCADA-системы с разнообразными клиентскими устройствами, доступными по сети. С помощью Web-сервера Apache, работающего в QNX, OpusXML рассылает Java-аплеты, доступные для авторизованных пользователей, которые предоставляют функции мониторинга и управления удаленным пользователям Phocus.
Использование Phocus в "интегрированных" приложениях без выделенного PLC будет очень эффективным. Логика работы управляющей части может быть запрограммирована с помощью BASIC-подобного скриптового языка Phocus SBL.
SCADA пакет Phocus 4 для ОС РВ QNX обладает следующими существенными качествами, важными для встроенных приложений:
реализация работы в режиме жесткого РВ, позволяющая совместить функции SCADA с управлением PLC в едином приложении;
высокая производительность и нетребовательность к ресурсам системы, позволяющая использовать низкочастотные процессоры для встроенных систем с пассивным охлаждением;
высокая устойчивость и надежность, позволяющая реализовать работу системы с высокой степенью доступности в необслуживаемом режиме даже без резервирования;
возможность дублированной конфигурации системы с реализацией режима активного резервирования, обеспечивающего высокую степень надежности и непрерывности управления, необходимую для бортовых встраиваемых приложений;
наличие BASIC-подобного скриптового языка Phocus SBL для программирования логики управляющей части в приложениях без выделенного PLC позволяет создавать эффективные интегрированные системы "все-в-одном" (SCADA/HMI/Control);
чрезвычайная компактность, позволяющая разместить весь полнофункциональный программный пакет вместе с ОС РВ QNX на карте Flash-памяти размером более 125 Мб, что дает возможность отказаться от таких малонадежных механических элементов, как HDD;
опция поставки разработчикам оборудования исходных кодов SCADA пакета, что обеспечивает адаптации ПО к аппаратной части, сертификации кодов на отсутствие недекларированных возможностей (так называемых "программных закладок") и предоставляет выгодные условия при создании тиражируемых продуктов.
Свойства SCADA пакета Phocus 4 для ОС РВ QNX позволяют использовать его и во многих других проектах АСУТП с высокими требованиями к надежности и отказоустойчивости. Применение ОС РВ QNX и архитектурные особенности Phocus делают его чрезвычайно эффективным и надежным средством для разработки ответственных приложений с большим числом точек данных.