
- •Введение
- •Глава 1. Основные принципы организации операционных систем реального времени
- •1.1. Общие положения и определения
- •1.2. Отличие механизма современных осрв
- •1.3. Параметры осрв
- •1.4. Программное обеспечение многозадачности ос
- •1.5. Архитектура осрв. Классы осрв
- •1.6. Синхронизация задач
- •1.7. Базовые понятия программного обеспечения реального времени
- •1.8. Асинхронный обмен данными
- •1.9. Надежность систем реального времени
- •1.10. Планирование задач
- •1.11. Планирование периодических процессов
- •1.12. Взаимоблокировки
- •Контрольные вопросы
- •Глава 2. Типовые операционные системы реального времени
- •2.1. Обзор систем реального времени
- •2.2. Операционная система Windows nt
- •2.2.1. Ужесточение требований к ос 90-х годов
- •2.2.2. Операционные системы реального времени и Windows nt
- •2.2.3. Процессы и потоки nt
- •2.2.4. Пути расширения реального времени для nt
- •2.2.5. Обработка прерываний и исключений
- •2.2.6. Особенности системы ввода/вывода системы nt
- •2.2.7. Windows nt как операционная система реального времени
- •2.2.8. Расширения Windows nt
- •2.3. Операционная система qnx
- •2.3.1. Общие положения
- •2.3.2. Системная архитектура qnx
- •2.3.3. Qnx как сеть
- •2.3.5. Оконная система Photon microGui
- •2.3.6. Phocus 4 для создания встраиваемых scada
- •2.4. Операционные системы реального времени для встраеваемых систем
- •2.5. Ос рв для встраиваемых модулей от компании Microsoft
- •2.6. Функциональные потребности scada-системы
- •Контрольные вопросы
- •Глава 3. Общий анализ контроллеров
- •3.1. Аппаратное обеспечение
- •3.2. Программирование plc
- •3.3. Выбор контроллерных средств
- •3.4. Классификация современных контроллеров
- •3.5. Взаимодействие компонентов
- •3.6. Проектирование распределенных систем управления
- •3.7. Открытая модульная архитектура контроллеров
- •3.8. Архитектура производственной базы данных реального времени
- •3.9. Эволюция стандарта pci для жестких встраиваемых приложений
- •3.11. Одно- и многоуровневые системы диспетчерского контроля и управления
- •3.12. Технологии и протоколы передачи данных в промышленности: Industrial Ethernet
- •3.13. Обеспечение надежности асу тп с использованием резервированного кольца Turbo Ring
- •3.14. Анализ архитектур контроллеров с параллельной шиной
- •3.15. Повышенные требования к устойчивости функционирования
- •Контрольные вопросы
- •Глава 4. Примеры реализации типовых контроллеров
- •4.1. Промышленные контроллеры для автоматизации технологических процессов
- •4.2. Модули adam-8000 от компании Advantech9 и система программирования adam-winplc7
- •4.3. LabView Real-Time LabView реального времени
- •4.4. Встраиваемые системы и ос для них
- •4.5. Промышленный контроллер р-130isa
- •4.6. Совместное использование hmi и pac
- •4.7. Система Реального Времени cf-mntr
- •4.8. Экономичные контроллеры Pico
- •4.9. RapidIo: технология для приложений реального времени
- •4.10. Trace mode 6 и t-factory 6: обзор исполнительных модулей
- •4.11. Контроллер Crestron cp2e
- •4.12. Асу тп на базе контроллеров micro-pc
- •4.14. Itv ndc-f18 – универсальные контроллеры ndc-f18
- •4.15. Сетевой контроллер компании Lenel для систем контроля доступа
- •4.16. Сетевой контроллер реального времени
- •Контрольные вопросы
- •Глава 5. Мультимедийные системы реального времени
- •5.1. Требования реального времени в системах мультимедиа
- •5.2. Требования к архитектуре мультимедиа-систем
- •5.3. Объединение графического и мультимедийного ядра в систему Freescale
- •5.5. Scsa: архитектура для систем мультимедиа реального времени
- •Контрольные вопросы
- •Заключение
- •Рекомендуемый библиографический список
- •Оглавление
- •Глава 1. Основные принципы организации операционных систем реального времени 6
- •Глава 2. Типовые операционные системы реального времени 55
- •Глава 3. Общий анализ контроллеров 179
- •Глава 4. Примеры реализации типовых контроллеров 236
- •Глава 5. Мультимедийные системы реального времени 292
- •Системы реального времени Программно-технический комплекс
- •346428, Г. Новочеркасск, ул. Просвещения, 132
1.11. Планирование периодических процессов
Внешние события, на которые СРВ должна реагировать, разделяют на периодические (возникающие через регулярные промежутки времени) и непериодические (возникающие непредсказуемо). При нескольких обрабатываемых потоков событий в зависимости от времени, затрачиваемого на обработку каждого из событий, может оказаться, что система не в состоянии своевременно обработать все события. Если в систему поступает m периодических событий, событие с номером i поступает с периодом Pi и на его обработку уходит Ci секунд работы процессора, все потоки могут быть своевременно обработаны только при выполнении условия
.
СРВ,
удовлетворяющая этому условию, называется
поддающейся
планированию
(планируемой).
Соотношение
является просто частью процессорного
времени, используемого процессом i,
а сама сумма – это коэффициент
использования
(коэффициент
загруженности)
процессора, который не может быть больше
1.
Алгоритмы планирования заданий могут быть разделены на статические и динамические. Статические алгоритмы определяют приемлемый план выполнения заданий по их априорным характеристикам, динамический алгоритм модифицирует план во время исполнения заданий. Издержки на статическое планирование низки, но оно крайне нечувствительно и требует полной предсказуемости той СРВ, на которой оно установлено. Динамическое планирование связано с большими издержками, но способно адаптироваться к меняющемуся окружению.
Классическим примером статического алгоритма планирования реального времени для прерываемых периодических процессов является алгоритм RMS (Rate Monotonic Scheduling – планирование с приоритетом, пропорциональным частоте). Этот алгоритм может использоваться для процессов, удовлетворяющих следующим условиям:
Каждый периодический процесс должен быть завершен за время его периода.
Ни один процесс не должен зависеть от любого другого процесса.
Каждому процессу требуется одинаковое процессорное время на каждом интервале.
У непериодических процессов нет жестких сроков.
Прерывание процесса происходит мгновенно, без накладных расходов.
Алгоритм RMS работает, назначая каждому процессу фиксированный приоритет, обратно пропорциональный периоду и, соответственно, прямо пропорциональный частоте возникновения событий процесса. Он может быть использован только при не слишком высокой загруженности процессора. Данный алгоритм гарантированно работает в любой системе периодических процессов при условии
Другим популярным алгоритмом планирования является алгоритм EDF (Earliest Deadline First – процесс с ближайшим сроком завершения в первую очередь). Алгоритм EDF представляет собой динамический алгоритм, не требующий от процессов периодичности. Он не требует и постоянства временных интервалов использования процессора. Когда процессу требуется процессорное время, он объявляет о своем присутствии и о сроке выполнения задания. Планировщик хранит список процессов, сортированный по срокам выполнения заданий. Алгоритм запускает первый процесс в списке, у которого самый близкий по времени срок выполнения. Когда новый процесс переходит в состояние готовности, система сравнивает его срок выполнения со сроком выполнения текущего процесса. Если у нового процесса график более жесткий, он прерывает работу текущего процесса.
Алгоритм EDF работает с любым набором процессов, для которых возможно планирование. Платой за это является использование более сложного алгоритма.