Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
zoo_ekzamen.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.74 Mб
Скачать

1. Трихомонады (Trichomonas vaginalis) и т. Hominis

Это возбудители трихомониаза. Обитают в половых и мочевыводящих путях.

Морфологическая характеристика трихомонад

Трихомонады (класс жгутиковые) являются возбудителями заболеваний, называемых трихомониазами. В

2. Лямблия (Lamblia intestinalis)

Лямблии относятся к классу Жгутиковые. Это единственное простейшее, обитающее в тонком кишечнике человека. Вызывает заболевание, называемое кишечным лямблиозом. Чаще всего им болеют дети младшего возраста.

Обитает в тонком кишечнике, главным образом в двенадцатиперстной кишке, может проникать в желчные протоки (внутри и внепеченочные), а оттуда — в желчный пузырь и ткань печени. Лямблиоз распространен повсеместно.

Особенности жизнедеятельности лямблий

Лямблии способны к образованию цист, которые c фекалиями выделяются наружу и таким образом распространяются в окружающей среде. Цисты образуются в нижних отделах тонкого кишечника.

Зрелые цисты имеют овальную форму, cодержат 4 ядра и несколько опорных аксостилей. Во внешней среде они довольно устойчивы к неблагоприятным условиям и сохраняют жизнеспособность в течение нескольких недель.

Заражение человека происходит при заглатывании цист, попавших в пищу или питьевую воду.

В тонком кишечнике происходит эксцистирование, образуются вегетативные формы (трофозоиты). С помощью присосок они прикрепляются к ворсинкам тонкой кишки.

Лямблии используют питательные вещества, которые они захватывают с поверхности клеток кишечного эпителия с помощью пиноцитоза. Если в кишечнике находится большое количество лямблий, они способны покрыть довольно большие поверхности кишечного эпителия.

В связи с этим существенно нарушаются процессы пристеночного пищеварения и всасывания пищи. Кроме этого, присутствие лямблий в кишечнике вызывает воспалительные явления. Проникая в желчные ходы, они вызывают воспаление желчного пузыря и нарушают отток желчи.

Лямблии могут встречаться у вполне здоровых внешне людей. Тогда наблюдается бессимптомное носительство. Однако эти люди опасны, так как могут заражать окружающих.

3. Лейшмании (Leishmaniae)

Лейшмании (Leishmania) — это простейшие класса жгутиковые. Являются возбудителями лейшманиозов — трансмиссивных заболеваний с природной очаговостью.

Заболевания у человека вызывают несколько видов этого паразита: L. tropica — возбудитель кожного лейшманиоза,L. donovani — возбудитель висцерального лейшманиоза, L. brasiliensis — возбудитель бразильского лейшманиоза, L.mexicana — возбудитель центрально Американской формы заболевания. Все они имеют морфологическое сходство и одинаковые циклы развития.

Существуют в двух формах: жгутиковой (лептомонадной, иначе промастигота) и безжгутиковой (лейшманиальной, иначе амастигота).

4. Трипаносомы (Tripanosoma)

Возбудителями трипаносомозов являются трипаносомы (класс жгутиковые). Африканские трипаносомозы (сонные лихорадки) вызывают Tripanosoma brucei gambiensi и T. b. rhodesiense. Американский трипаносомоз (болезнь Чагаса) вызывает Tripanosoma cruzi.

Паразит имеет изогнутое тело, сплющенное в одной плоскости, заостренное с обеих сторон. Размеры — 15—40 мкм. Стадии, обитающие в организме человека, имеют 1 жгутик, ундулирующую мембрану и кинетопласт, расположенный у основания жгутика.

В теле человека и других позвоночных паразит обитает в плазме крови, лимфе, лимфатических узлах, спинномозговой жидкости, веществе головного и спинного мозга, серозных жидкостях.

Заболевание повсеместно распространено по территории всей Африки.

Трипаносомоз, вызываемый этими паразитами, является типичным трансмиссивным заболеванием с природной очаговостью. Возбудитель трипаносомоза развивается со сменой хозяев. Первая часть жизненного цикла проходит в организме переносчика. Tripanosoma brucei gambiensi переносится мухами цеце Glossi-na palpalis (обитает вблизи человеческого жилища), T. b. rho-desiense, Glossina morsitans (в открытых саваннах). Вторая часть жизненного цикла протекает в организме окончательного хозяина, в качестве которого могут выступать крупный и мелкий рогатый скот, человек, свиньи, собаки, носороги, антилопы.

При укусе мухой цеце больного человека трипаносомы попадают в ее желудок. Здесь они размножаются и проходят несколько стадий. Полный цикл развития занимает 20 дней. Мухи, в слюне которых содержатся трипаносомы в инвазионной (метациклической) форме, при укусе могут заразить человека.

Сонная болезнь без лечения может протекать долго (до нескольких лет). У больных наблюдаются прогрессирующая мышечная слабость, истощение, сонливость, депрессия, умственная заторможенность. Возможно самоизлечение, но чаще всего без лечения болезнь заканчивается летально. Трипаносомоз, вызываемый T. b. Rhodesiense, протекает более злокачественно и заканчивается летальным исходом через 6—7 месяцев после заражения.

  1. грегарины

Грегарины (в особенности паразитирующие в кишечнике членистоногих) могут достигать значительных размеров - 16 мм. Самые же мелкие виды не превышают 10-15 мкм. Тело кишечных грегарин обычно продолговатой, червеобразной формы ( рис. 39 ). Грегарины из полости тела могут быть почти сферическими.

Передний конец тела большинства грегарин образует органоид прикрепления к стенкам кишечника - эпимерит ( рис. 39 ). Последний имеет крючки, тонкие выросты в форме нитей и другие образования, позволяющие паразиту закрепиться на месте и не быть вынесенному из кишечника с пищевыми массами.

Снаружи тело одето образующей продольные гребни пелликулой, представляющей наружный плотный слой эктоплазмы. За счет нее и формируются крючки и отростки эпимерита. Под пелликулой залегает слой эктоплазмы, который у многих (но не у всех) грегарин примерно на границе передней трети тела образует волокнистую перегородку, отделяющую передний, лишенный ядра участок цитоплазмы, называемый протомеритом. Задний больший и снабженный ядром участок тела называется дейтомеритом.

Таким образом, многие грегарины, оставаясь одноклеточными, становятся трехчленистыми (эпи-, прото- и дейтомерит). Трехчленистые грегарины объединяются в подотряд Cephalina. Это в основном кишечные формы. Другие (преимущественно полостные, паразиты половых органов и т.п.) не обладают трехчленистостью, и их тело червеобразное или сферическое. Такие грегарины объединяются в подотряд Acephalina.

Лежащая под пелликулой эктоплазма у многих грегарин сложного строения: периферическая часть ее состоит из студенистого слоя, под которым у многих грегарин расположена система кольцевых или продольных волоконец- мионем, имеющих сократительный характер. Наличие их обусловливает способность некоторых грегарин к сокращению и вытягиванию тела.

Полужидкая эндоплазма грегарин всегда очень богата включениями полисахарида гликогена, что связано, очевидно, с тем, что обмен веществ носит у большинства грегарин анаэробный характер, в процессе которого потребляется большое количество углеводов. Ротовое отверстие и порошица отсутствуют. Нет и сократительной вакуоли (как и у всех прочих Sporozoa). Питание и дыхание осуществляются всей поверхностью тел

  1. кокцидии

Кокцидий, несмотря на мелкие размеры, довольно сложной структуры, Особенно сложно устроены подвижные стадии - зоиты ( мерозоиты и спорозоиты ). Схема строения мерозоита представлена на рис. 42 и табл. III .

Снаружи тело кокцидий покрыто трехмембранной (а не двухмембранной, как полагали недавно) оболочкой - пелликулой. Под ней расположена система трубчатых фибрилл, называемая субпелликулярными микротрубочками. Вместе с пелликулой они образуют наружный скелет зоита (его каркас). Наружная мембрана пелликулы является интактной на всем своем протяжении, тогда как две внутренние мембраны прерываются на переднем и заднем конце, где располагаются переднее и заднее опорные кольца ( рис. 42 ). В отверстии переднего кольца располагается особая конусообразная полая прочная структура, называемая коноидом, стенку которого формируют спирально закрученные фибриллы. Коноид несет опорную функцию при проникновении зоита в клетку хозяина.

В передней трети зоита расположены трубчатые мешковидно расширяющиеся на внутреннем конце органоиды, число которых у разных видов кокцидий варьирует от 2 до 14. Они называются роптриями . Дистальные концы их проходят сквозь кольцо коноида. Предполагают, что в роптриях заключается вещество, способствующее проникновению зоита в клетку хозяина. Имеются наблюдения, показывающие, что в момент контакта зоита с клеткой содержимое роптрий изливается наружу.

В переднем же конце мерозоита расположено некоторое количество (10-12, а иногда до нескольких десятков) плотных извивающихся тяжей - микронем. Их функциональное значение неясно. Предполагается, что они связаны с роптриями и заключающееся в них вещество через роптрий также изливается наружу.

Своеобразным компонентом тела кокцидий (на всех стадиях цикла, кроме микрогамет) являются микропоры ( рис. 42 ). Они представляют собой ультрамикроскопические впячивания пелликулы. Две внутренние мембраны при этом прорываются, наружная остается интактной.

В настоящее время большинством исследователей принимается, что эти образования представляют собой микроцитостомы (ротовые отверстия на ультраструктурном уровне), через которые в цитоплазму поступают питательные вещества. Следовательно, представления о питании кокцидий, как и других внутриклеточных паразитов, всей поверхностью тела, т.е. осмотически, в свете новых данных должны быть пересмотрены.

Кроме рассмотренных органоидов, свойственных зоитам кокцидии, в цитоплазме последних присутствуют и общеклеточные органоиды - митохондрии и аппарат Гольджи ( рис. 42 ), эндоплазматическая сеть с рибосомами, а также различные включения: зерна углеводов, липидов, белков - резервных энергетических материалов.

  1. токсоплазмы

В 1908 г. французскими учеными Николем и Мансо у грызунов в Северной Африке были обнаружены внутриклеточные паразиты, получившие название Toxoplasma gondii. Дальнейшие исследования показали, что эти паразиты широко распространены среди разнообразных видов птиц и млекопитающих, а также могут паразитировать и у человека, вызывая тяжелые заболевания - токсоплазмозы.

Долгое время вопрос о положении токсоплазм в системе простейших оставался неясным. Лишь в 1970 г. учеными Дании, Англии и США почти одновременно был раскрыт жизненный цикл этого паразита и показана его принадлежность к кокцидиям.

У токсоплазм жизненный цикл протекает со сменой хозяев.

Половой процесс и образование ооцист происходит в кишечнике кошек (а также и других видов семейства кошачьих), которые являются окончательными хозяевами паразита. Бесполое же размножение может осуществляться в разных млекопитающих и птицах. По-видимому, любые виды теплокровных позвоночных (в том числе и человека) могут быть промежуточными хозяевами токсоплазмы ( рис. 43 ).

Бесполые формы токсоплазмы имеют вид полумесяца длиной 4-7 мкм, шириной 2-4 мкм. Их ультраструктура идентична с таковой мерозоитов и спорозоитов других кокцидий ( рис. 42 ), что подтверждает их принадлежность к этому классу.

Токсоплазмы поражают клетки различных органов, в первую очередь ретикуло-эндотелиальной системы и мозга. Размножаются они путем эндодиогении - особой формы деления ( рис. 44 ).

При этой форме размножения формирование двух дочерних особей происходит внутри материнской. Закладка апикальных комплексов дочерних клеток (т.е. коноида, колец, роптрий, микронем и др.) происходит внутри материнской клетки одновременно с началом деления ядра. Пелликула дочерних клеток образуется за счет наружной мембраны материнской клетки, которая целиком переходит на дочерние особи. В тканях хозяина (в особенности в мозге) в результате повторных делений образуются скопления токсоплазм, включающие десятки отдельных особей (клеток). Такие скопления окружаются оболочкой и называются цистами. При попадании последних в кишечник кошки (например, при поедании промежуточного хозяина) они внедряются в эпителиальные клетки кишечника и проделывают типичный для кокцидий цикл, который описан на примере эймерий (шизогония, образование микро- и макрогамет, оплодотворение, образование ооцисты, спорогония). В отличие от эймерий зрелые ооцисты Toxoplasma обладают не четырьмя, а двумя спорами с четырьмя спорозоитами в каждой. Ооцисты служат источником нового заражения как промежуточных хозяев, так и кошки.

Особенность токсоплазм - распространение бесполой части цикла на множество видов теплокровных животных, многие из которых служат пищей окончательному хозяину. Источником инвазии токсоплазмой служат не только ооцисты, но также ткани зараженного промежуточного хозяина, содержащие токсоплазм. Это может происходить при поедании зараженного животного, а также, по-видимому, через выделения кишечника, слизистые носа и глотки. У млекопитающих токсоплазмы могут передаваться через плаценту развивающемуся плоду. Таким образом, токсоплазмоз может быть приобретенным и врожденным (от больной матери).

В заражении человека существенную роль играют домашние животные (обычно кошки), которые нередко болеют токсоплазмозом или бывают бессимптомными носителями паразита. Клинические формы токсоплазмоза разнообразны: поражения лимфатической системы, тифоподобные заболевания, поражения нервной системы, органов зрения. Вопросы эпидемиологии, профилактики и терапии токсоплазмоза в настоящее время усиленно разрабатываются в медицине.

13.малярийный плазмодий

В человеке паразитируют четыре вида рода Plasmodium. Жизненный цикл их протекает сходно.

В кровь человека паразит попадает в стадии спорозоита при укусе комара рода Anopheles (стадия спорозоита малярийного плазмодия соответствует одноименной стадии в жизненном цикле кокцидий ).

Спорозоиты - очень мелкие (5-8 мкм длины) тонкие червеобразные одноядерные клетки ( рис. 47 ). Их ультраструктура сходна с таковой у кокцидий, за исключением того, что у спорозоитов малярийного плазмодия отсутствует коноид.

Током крови они разносятся по телу и внедряются в клетки печени, где превращаются в шизонтов, размножающихся бесполым путем ( шизогония ), как и у кокцидий.

Образовавшиеся после завершения первого поколения - шизогонии мерозоиты (одноядерные продукты бесполого размножения шизоитов) внедряются уже не только в клетки пораженного органа, а и в эритроциты крови и вновь выносятся в кровяное русло. В эритроцитах крови больных малярией людей можно найти небольших амебовидно меняющих форму паразитов. Эти эритроцитарные шизонты растут и заполняют эритроцит, от которого остается только периферическая каемка. Растущие шизонты обладают ультрацитостомом, как у мерозоитов кокцидий . Поглощаемый паразитом гемоглобин частично усваивается, а непереваренные остатки превращаются в зернистый черный пигмент - меланин.

По завершении шизогонии образуется 10-20 мерозоитов, которые покидают эритроцит (он при этом разрушается), внедряются в новые кровяные тельца, и процесс повторяется.

Следовательно, у плазмодия малярии две формы шизогонии: одна протекает в клетках печени, вторая - в эритроцитах.

После нескольких циклов бесполого размножения (шизогонии) начинается подготовка к половому процессу. При этом внедряющиеся в эритроциты мерозоиты дают начало не шизонтам, а гамонтам (подготовительные стадии образования гамет). Имеются две категории несколько различающихся гамонтов: макрогамонты, дающие впоследствии женские половые клетки, и микрогамонты, дающие мужские гаметы.

Дальнейшего развития гамонтов в крови человека не происходит. Оно осуществляется лишь в том случае, если кровь с ними попадает в кишечник малярийного комара (Anopheles) при сосании. Там женские гамонты целиком превращаются в крупные макрогаметы. В мужских гамонтах происходит деление ядра на 5-6 ядер, которые окружаются тонким слоем цитоплазмы и отрываются от гамонта в виде подвижных, червеобразных телец - микрогамет. Происходит копуляция гамет.

Образующаяся продолговатая зигота подвижна (ее называют оокинетой ); она внедряется в стенку кишечника комара и инцистируется на стороне его, обращенной к полости тела, превращаясь в ооцисту. Последняя растет и выпячивается в полость тела комара. Ядро зиготы многократно делится. Содержимое ооцисты затем распадается на громадное количество (до 10000) тонких одноядерных подвижных спорозоитов. В это время оболочка ооцисты лопается и спорозоиты попадают в полость тела комара, наполненную гемолимфой. Из полости тела спорозоиты активно проникают в клетки слюнных желез насекомого, а затем в просвет протока желез. При укусе комаром человека спорозоиты через хоботок вносятся в ранку и попадают в кровь.

Таким образом, вся жизнь простейшего протекает внутри организма хозяина (бесполая часть цикла - в человеке, половая - в комаре). Ни на одной стадии паразит не находится непосредственно во внешней среде. В связи с этим в цикле развития паразита отсутствуют стадии, снабженные защитными оболочками (как в цикле кокцидий Eimeria ).

Plasmodium ovale

Plasmodium malariae

Plasmodium falciparum

  1. ресничные инфузории

Инфузории имеют крайне разнообразную форму, но чаще они продольно овальные (рис. 54 ). Размеры их варьируют в широких пределах. Длина от 30-40 мкм до миллиметра и более. Большинство инфузорий относится к числу относительно крупных одноклеточных организмов. Это наиболее сложно устроенные простейшие. Цитоплазма всегда ясно разделяется на два слоя - наружный (эктоплазму, или кортекс) и эндоплазму. Наружный слой эктоплазмы образует прочную эластичную пелликулу (табл. I ). Электронная микроскопия показывает, что она слагается из наружной двойной мембраны, внутренней двойной мембраны и просвета между ними. Снаружи пелликула часто бывает скульптурирована, образуя закономерно расположенные утолщения. У инфузории туфельки (Paramecium), например, утолщения пелликулы представляют собой правильно расположенные шестиугольники, напоминающие собой пчелиные соты. Подобная скульптурированность пелликулы повышает ее прочность.

Снаружи тело инфузории покрыто ресничками, которые в эктоплазме берут начало откинетосом (базальных телец). Число ресничек может быть очень велико; так, у инфузории туфельки их 10-15 тыс. Ультраструктура ресничек совершенно идентична таковой жгутиков ( табл. I , табл. II ). В центре реснички расположены 2 фибриллы, 9 двойных фибрилл проходят по периферии. Они продолжаются и в кинетосому, где становятся тройными. Равномерное расположение большого числа ресничек представляет собой исходный и более примитивный признак для инфузорий.

Специализация локомоторного аппарата идет в двух направлениях. Во- первых, реснички концентрируются на определенных участках тела. Во- вторых, отдельные реснички могут сливаться (слипаться), сохраняя свою индивидуальность, в более крупные и соответственно более мощно работающие комплексы. Если соединяются реснички, расположенные в один или большее число рядов, то получается мерцательная перепонка. Такие структуры в зависимости от длины получают название мембранелл или мембран. Если соединяются рядом расположенные реснички в виде кисточки, то такие образования называются цирри ( табл. II ).

Особенно сложный ресничный аппарат дифференцируется обычно в области ротового отверстия, где он приобретает новую функцию - направления пищи к ротовому отверстию.

С кинетосомами связаны три основные системы фибрилл кортекса, в различной степени развитые у разных групп инфузорий. На рис. 56 схематично представлен поперечный разрез кинетосомы (на основе электронно-микроскопических данных) с девятью триплетами перерезанных продольных фибриллей (сравните с рис. 20 ). От кинетосомы отходит поперечно исчерченное волоконце - кинетодесма и два пучка фибрилл, слагающиеся из микротрубочек. Основание кинетосомы окружено подковообразной зоной уплотненной цитоплазмы. На рис. 55 показано соотношение всех названных компонентов в кортексе инфузории Tetrahymena руriformis. Все эти структуры имеют, вероятно, опорное значение.

У некоторых инфузорий в эктоплазме располагаются сократительные волоконца - мионемы ( табл. I ), благодаря чему такие виды способны к резкому сокращению (Stentor, Spirostomum).

В эктоплазме многих инфузорий залегают особые защитные приспособления -трихоцисты - короткие палочки, контактирующие с наружным слоем пелликулы при посредстве особого выроста и расположенные перпендикулярно поверхности тела. При раздражении животного трихоцисты выстреливают наружу, превращаясь в длинную упругую нить ( табл. I ). Нити вонзаются в тело врага или добычи и, по-видимому, вносят в него какое-то ядовитое вещество, так как оказывают сильное парализующее действие на пораженных животных.

Многие инфузории способны жить при очень различных парциальных давлениях кислорода. Например, инфузория туфелька, при дыхании поглощающая значительное количество кислорода, может жить в среде, имеющей лишь следы кислорода. При этом меняется характер обмена, в котором преобладающее значение приобретают расщепительные процессы (гликолиз), идущие в отсутствие кислорода. Некоторые группы паразитических инфузорий (например, живущие в передних отделах желудка жвачных) всецело существуют за счет расщепительного обмена, и свободный кислород для них ядовит.

Многие инфузории имеют специальные неподвижные освязательные реснички.

У громадного большинства инфузорий на границе между экто- и эндоплазмой имеются сократительные вакуоли. В наиболее простых случаях они представляют собой периодически пульсирующий пузырек, как это наблюдается у амеб ижгутиконосцев . Но у многих инфузорий строение сократительных вакуолей усложняется. У инфузории туфельки, например, они состоят из собственно вакуоли (центрального резервуара) и расположенных венчиком 5-7 приводящих каналов ( рис. 54 ). Кроме того, резервуар при помощи тонкого выводящего канала сообщается с окружающей средой. Выделяемая жидкость собирается из цитоплазмы в приводящие каналы; последние сокращаются и опорожняют свое содержимое в центральный резервуар, который при этом раздувается (стадия диастолы). Далее сокращается сама вакуоль (систола) и жидкость из нее выталкивается наружу. Основная функция сократительной вакуоли - осморегуляция.

Промежуток между двумя пульсациями у инфузории туфельки при 16*С около 20 с. Частота сокращений зависит от температуры и количества солей в окружающей среде: чем больше в воде солей, тем реже темп пульсации. Объем выводимой через вакуоли жидкости велик; так, у инфузории туфельки с двумя вакуолями в течение 40-50 мин выделяется объем жидкости, равный объему тела простейшего. Основным путем выделения продуктов обмена веществ служит пелликула, через которую они удаляются путем диффузии.

  1. размножение инфузорий

Бесполое размножение происходит путем поперечного деления и половое — конъюгацией.

Это наиболее сложно дифференцированные одноклеточные с постоянными цито-плазматическими структурами. Стенки клетки инфузорий имеют «альвеолярное строение» с четырьмя мембранами и полостями — «альвеолами» — посередине. Кроме того, стенка содержит трихоцисты. Это защитные приспособления в виде палочек, расположенных под пелликулой. При раздражении животного трихоцисты выстреливаются наружу.

Половой процесс сопровождается перестройкой ядерного аппарата. При конъюгации в клетках партнеров происходит распад макронуклеуса и редукционное деление микронуклеуса. Получаются четыре ядра, три из них отмирают. Оставшееся ядро делится на два пронуклеуса — мужской и женский. Между особями происходит обмен: одно ядро переходит в соседнюю клетку, другое — приходит из нее. Эти гаплоидные ядра сливаются, образуя диплоидное ядро — синкарион. Затем партнеры расходятся, а синкарионы в каждом из них путем деления создают новый ядерный аппарат. Половой процесс с такой же перестройкой ядерного аппарата может идти и без партнера. Слияние пронуклеусов в данном случае является самооплодотворением и носит название автогамии.

Свободноживущие инфузории живут в пресной и соленой воде, в толще прибрежного песка и почве. Питаются они бактериями, водорослями или одноклеточными животными. Нередки колониальные и сидячие формы. Многочисленные паразитические формы инфузорий обитают в желудке жвачных млекопитающих, на коже рыб (рис. 11), в толстых кишках человека. Инфузория балантидий (Balantidium coli) вызывает у людей тяжелые колиты.

16. инфузории паразиты

Инфузории — паразиты. На рыбах иногда можно уви­деть сыпь. Большая рыба словно обсыпана манной крупой. Каждая крупинка — это инфузория — паразит ихтиофти-рус, поселившаяся на рыбе.

Достигнув в процессе роста 1 мм в диаметре, инфузо­рия покидает рыбу и распадается на тысячу крошечных инфузорий. Бродяжки вновь заражают рыб. В рыбоводчес­ких хозяйствах может происходить большое уничтожение мальков рыб. Другая инфузория-паразит, балантидий, се­лится в кишечнике человека, животных. До определенного какого-то момента она может жить спокойно, но вдруг начинает «вгрызаться» в стенки кишечника, поедая их ткани и красные кровяные клетки. Стенки кишечника покрываются язвами.

Инфузории и копытные животные.

Копытные животные копытные не пережевывают траву сразу. Во время отдыха жвачные животные отрыги­вают траву и пережевывают «жвачку». В рубце желудка коровы, лосей и других животных большое количество инфузорий и бактерий. В одном кубическом сантиметре содержащегося в рубце сока находится до одного миллиона инфузорий. Инфузории помогают переваривать пищу. Обработанная инфузориями пища скатывается в шарики в другом отделе желудка — сетке — и оттуда возвращается в рот. Это и есть та «жвачка», которую усердно пережевывает животное. Затем пища попадает в третий отдел — книжку, затем в следующий отдел — сычуг. Здесь пища обрабаты­вается пищеварительным соком.

У других травоядных животных (лошади) инфузориям понравилось обитать в кишечнике.

Дизентерийная амеба

Дизентерийная амеба - постоянный паразит человека, возбуждает амебиаз. Может

образовывать цисты в толстой кишке человека. Их диаметр 8 – 15 мк. Она вызывает

появле-ние язв в толстом кишечнике. Эта амеба вызывает заболева-ние похожее на

дизентерию. В неблагоприятных условиях – амебацистит.

17.сосущие инфузории

Сосущие инфузории - это сидячие формы, лишенные во взрослом состоянии ресничек, рта и глотки. У них есть щупальца, присутствующие у многих видов в различном числе ( рис. 70 , рис. 71 ). Они могут быть как неветвящимися, так и ветвящимися. На концах щупальца часто вздуты и несут отверстие, а внутри них проходит канал. Щупальца служат для ловли добычи, в основномресничных инфузорий , и принятия пищи. Если проплывающая мимо сосущей инфузории ресничная случайно заденет за одно из щупалец, то она прилипает к нему. Затем к ней пригибаются другие щупальца, пелликула добычи растворяется и все содержимое ее по каналу щупалец постепенно перетекает внутрь сосущей инфузории.

Принадлежность взрослых Suctoria к типу инфузорий доказывается наличием у них макро- и микронуклеуса и половым процессом в форме конъюгации . Особенно же рельефно связь с ресничными инфузориями выступает во время бесполого размножения - почкования. На свободном конце сосущей инфузории появляется один или несколько бугорков (почек), в которые входят участки макронуклеуса и по одному микронуклеусу; микронуклеус во время почкования митотически делится ( рис. 72 ). Каждый бугор (почка) отшнуровывается от материнского организма, развивает на себе несколько венчиков ресничек и уплывает в виде бродяжки, напоминающей ресничную инфузорию. У некоторых Suctoria образование почек происходит внутри тела материнской особи, а не снаружи ( рис. 72 ). Через некоторое время бродяжка садится на субстрат, выделяет стебелек, теряет реснички, а на свободном конце тела образуются сосательные щупальца. Такой ход бесполого размножения указывает на происхождение сосущих инфузорий от ресничных.

18. колониальные одноклеточные

Такие существа, как пандорина, эвдорина, вольвокс, представляют собой как бы промежуточное звено между одноклеточными и многоклеточными организмами. Хотя эти крутящиеся в воде шарики и состоят из многих клеток (у вольвокса даже из нескольких тысяч), однако их ещё нельзя отнести к числу многоклеточных: это только колонии одноклеточных организмов, сохраняющих и при совместном существовании то же строение, как и отдельно живущие клетки, и выполняющих одинаковые функции.  У настоящих же многоклеточных, как мы видели, клетки наружного и внутреннего слоев имеют уже неодинаковую форму и выполняют различные функции; кроме того, и те и другие не похожи на ту клетку, от которой все они произошли путём многократно повторяющихся делений, то есть на яйцевую клетку. С этим связано и другое очень важное различие. Многоклеточный организм составляет единое целое, и его отдельные части в своих жизненных отправлениях зависят друг от друга. Поэтому если многоклеточное животное разрезать на куски, то оно или погибнет, или его куски восстанавливают (регенерируют) утраченные части и снова становятся целыми организмами, как это бывает у гидр и губок.  Если же каким-нибудь способом уничтожить часть клеток в колонии эвдорины или вольвокса, то на их месте так и остаются пустые пробоины; необходимость восстанавливать целостность всей колонии у этих организмов ещё не выработалась. Конечно, ни эвдорина, ни вольвокс, ни какой-либо другой из современных колониальных организмов не являются предками современных многоклеточных животных, но их строение показывает в общих чертах, какой основной тип организации должны были иметь отдалённые предки многоклеточных. Это подтверждается и ходом развития отдельной особи многоклеточного животного: после дробления яйца зародыш первое время представляет собой комочек, состоящий почти из одинаковых клеток, напоминая этим колонию одноклеточных организмов, и только уже в дальнейшем приобретает более сложное строение.

19.теория происхождения многоклеточных

Теория гастреи.

Согласно этой теории предком многоклеточных была гастрея - многоклеточный двуслойный организм. Она произошла от колониальных протистов с шарообразными колониями. Процесс интеграции клеток в колонии сделал возможным разделение функций между клетками: передние клетки утрачивают жгутики и превращаются в фагоциты, сидящие во впячивании на переднем конце - образуется кишечник.Остальные клетки утрачивают пищеварительную функцию и становятся чисто двигательными. Рот гастреи находился на переднем конце, и пища "сама заплывала" в кишечник. Симметрия у гастреи была радиальной. При переходе к сидячему образу жизни ее потомки эволюционировали в губок и кишечнополостных, а при переходе к ползанию по дну - в плоских червей и всех остальных многоклеточных.

Теория фагоцителлы.

Эта теория во многом сходна с предыдущей. Но предком многоклеточных считается фагоцителла. Фагоцителла не имела рта и кишечника, пищеварение было внутриклеточное. Рот сформировался,как просвет между клетками наружного слоя, ведущий во внутреннюю паренхиму. Располагался он, в отличие от гастреи на заднем конце тела. Кишечника еще не было. Но теперь возникла возможность питаться более крупной добычей: внутренние клетки могли окружать ее, образуя гигантскую пищеварительную вакуоль. Однако для хищничества нужна еще способность ловить добычу. Поэтому хищничать научились только настоящие многоклеточные - после того, как у них возникли мышцы и управляющая ими нервная система. Постепенно у потомков фагоцителлы сформировался постоянный кишечник. По мере увеличения размеров он мог усложняться: возникли боковые карманы, чтобы доставлять пищу к наружным слоям клеток. В дальнейшем у некоторых животных эти карманы могли отделиться, дав начало полости тела - целому. Фагоцителла обитала в толще воды. Нетрудно представить себе, как от нее могли произойти современные группы животных при переходе к жизни на дне. Когда рта еще не было, осевшая на дно фагоцителла "превратилась" в трихоплакса. После появления рта, но до появления кишечника при переходе к ползанию возникли бескишечные турбеллярии. Рот у них сместился на брюхо, и они стали двустороннесимметричными. После появления кишечника часть потомков фагоцителлы перешли к сидячему образу жизни на дне - они превратились в кишечнополостных. 

Теория синзооспоры.

Гаметы и зигота - единственные одноклеточные стадии в жизненном цикле животных. Многоклеточных поколений может быть в жизненном цикле несколько. Согласно данной теории многоклеточные произошли от колониальных протистов. У протистов встречаются клетки, сильно увеличенные за счет запасания питательных веществ - как яйцеклетка у животных. Часто такие клетки делятся несколько раз подряд - это похоже на дробление. Таким способом образуются у протистов одноклеточные мелкие расселительные стадии - зооспоры. У колониальных протистов зооспоры могут оставаться все вместе, образуя колонию - синзооспору. В процессе эволюции могла произойти неотения и утратиться взрослая сидячая стадия. Таким образом бластула - это синзооспора, семья зооспор. Отличия от теорий фагоцителлы и гастреи:

 Считается, что никогда не существовало однослойного шарообразного предка. Об этом свидетельствует то, что у всех многоклеточных бластулы не питаются. Не питаются и образующиеся из них паренхимулы. Поэтому и у древних многоклеточных такие стадии не были взрослыми организмами - это были всегда только личинки.

 Сидячий образ жизни примитивных взрослых многоклеточных.

 Наиболее примитивной из расселительных личинок считается бластула. В паренхимулу она превращается, готовясь к превращению во взрослый организм. Этот метаморфоз происходит после перехода к сидячему образу жизни. У всех остальных многоклеточных взрослая сидячая стадия утратилась. У этих животных личинки стали взрослыми - произошла неотения.

Теория целлюляризации.

Эта теория на сегодняшнем уровне знаний имеет лишь исторический интерес. Она предполагает, что предками многоклеточных были сложно организованные протисты, такие как инфузории, а органы многоклеточных образовались в результате отделения мембранами органелл. Так, в соответствии с этой теорией кишечник образовался из глотки инфузории-туфельки, выделительная система - из ее сократительных вакуолей, покровы - из периферического слоя цитоплазмы. Эта теория полностью не соответствует взглядам современной науки и является безусловно ошибочной.

О предках многоклеточных

В рамках рассмотреннных теорий предполагается, что скорее всего предками многоклеточных была группа воротничковых жгутиконосцев - хоанофлагеллят. В пользу этого говорит то, что для примитивных многоклеточных очень характерны воротничково - жгутиковые клетки, строение которых очень слабо отличается от строения хоанофлагеллят. Подходящий у воротничковых жгутиконосцев и способ питания. Все они гетеротрофы, питающиеся за счет фагоцитоза и пиноцитоза. Им свойственна колониальность. Среди колоний есть даже такие, у которых наружные клетки имеют воротнички и жгутики, а внутренние - амебоидные. Единственный недостаток хоанофлагеллят, как предков многоклеточных, состоит в том, что до сих пор у них достоверно известен только один способ размножения - деление пополам. Ничего похожего на половое размножение или на дробление у них нет. Тем не менее, многие ученые считают эту группу протистов наиболее вероятными предками всех Metazoa

20. пластинчатые

Trichoplax - морское, ползающее по поверхности водорослей существо. Тело его в виде очень тонкой сероватой пластиночки, не более 4 мм в поперечнике. Животное медленно скользит на своей нижней поверхности, прилегающей к субстрату, и при этом меняет очертания. Направление движения тоже легко меняется; тело не имеет постоянных переднего и заднего концов и определенной симметрии. Ползущий трихоплакс напоминает гигантскую амебу ( рис. 73 ).

Нижний, прилегающий к субстрату клеточный слой трихоплакса, условно называющийся "брюшным", состоит из высоких клеток, несущих каждая по одному жгуту ( рис. 73 ).

Верхний, или "спинной", клеточный слой обладает признаками так называемого погруженного эпителия. Каждая из его клеток состоит из лежащей на поверхности цитоплазматической пластинки с одним жгутом и погруженного в паренхиму клеточного тела с ядром. Некоторые из этих клеток содержат довольно крупную жировую (липидную) вакуоль. Характерно, что покровный слой клеток ничем не отграничен от паренхимы (основная, или базальная, мембрана отсутствует).

Все внутреннее пространство животного заполнено массой очень разнообразных амебоидных клеток, способных перемещаться посредством псевдоподий. Многие клетки брюшного эпителия, по-видимому, утрачивают свой жгут, погружаются внутрь тела и превращаются в амебообразные элементы. То же происходит и с некоторыми клетками спинного эпителия, хотя и в меньшей степени. Среди клеточных элементов паренхимы особенно выделяются крупные веретеновидные клетки, которые тянутся от брюшной стороны тела к спинной и обладают сократительной функцией.

Трихоплакс может накрывать телом скопления пищевых частиц (например, жгутиконосцев Cryptomonas), изливать на них пищеварительный секрет клеток брюшного эпителия и всасывать затем своей поверхностью продукты наружного пищеварения. Вместе с тем наличие в некоторых амебоцитах паренхимы пищеварительных вакуолей говорит о том, что питание осуществляется также посредством фагоцитоза.

Механизм "амебоидного" движения у Trichoplax, который совершенно лишен мускульных элементов, остается загадочным. Можно только предполагать, что веретеновидные клетки паренхимы с их митохондриальным комплексом способны сокращаться и что это имеет прямое отношение к движению животного. Однако вряд ли только этим можно объяснить все изменения формы тела.

21.губки физиология

Если к воде, содержащей живую губку, прибавить мелко растертую тушь, то видно, что зерна туши током воды, постоянно проходящим через канальную систему, увлекаются через поверхностные поры внутрь тела губки, проходят через каналы, попадают в парагастральную полость и через оскулум выводятся наружу. Опыт показывает путь воды и взвешенных в воде мелких частиц пищи, проходящих через тело губки. Самый ток воды через тело вызывается действием воротничковых клеток в жгутиковых камерах: жгутики клеток бьют всегда в одном направлении - к парагастральной полости.

Количество фильтруемой через тело губки воды велико. Известковая губка Leuconia высотой 7 см за сутки пропускает через тело 22 л воды. При этом движение воды в конечных отделах канальной системы совершается со значительной силой. У Leuconia вода из оскулума выбрасывается на расстояние 25-50 см. Воротничковые клетки захватывают из циркулирующей мимо воды взвешенные в ней мелкие пищевые частицы (бактерии, простейшие и т.п.) и заглатывают их. Участие хоаноцитов в процессе пищеварения может быть различно. У большинства известковых губок они не только захватывают частички пищи, но в них образуются пищеварительные вакуоли (как у простейших) и протекает внутриклеточное пищеварение. При этом лишь часть заключенной пищи передается амебоцитам мезоглеи. У других (стеклянные губки) хоаноциты только "ловят" пищу, не переваривают ее и сразу же передают амебоцитам.

Наконец, у некоторых видов за хоаноцитами сохраняется лишь гидро- кинетическая функция (движение воды, вызываемое биением жгутиков), а пищевые частицы улавливаются непосредственно амебоцитами по ходу каналов. Утеря хоаноцитами пищеварительной функции - явление вторичное.

Губки неподвижны и почти неспособны к каким бы то ни было изменениям формы тела. Только поверхностные поры могут медленно замыкаться при сокращении цитоплазмы пороцитов. Очень медленно может сокращаться оскулярная часть тела некоторых губок. Это происходит при сокращении особых, вытянутых в длину клеток - миоцитов.

Раздражимость у губок почти ничем не обнаруживается: можно действовать на губку различными раздражителями (механическими, термическими и т. д.) - никакого внешнего эффекта не получится; это свидетельство отсутствия у губок нервной системы.

Губки размножаются бесполым и половым способами. Бесполое размножение носит характер почкования. На поверхности губки появляется бугор, в который продолжаются все слои тела и парагастральная полость. Этот бугор постепенно растет, на конце его прорывается новый оскулум.

Полное отделение почки происходит сравнительно редко, обычно дочерние особи сохраняют связь с материнской - возникает колония ( рис. 83 ). Границы между отдельными особями могут сглаживаться, так что вся колония сливается в общую массу. В таких колониях о числе слившихся особей можно судить по числу оскулумов.

Особый способ внутреннего почкования существует у пресноводной губки бадяги. Летом бадяга размножается обыкновенным почкованием и половым путем. Но к осени в мезоглее бадяги наблюдается образование амебоидными клетками особых шаровидных скоплений - геммул ( рис. 84 ). Геммула, или внутренняя почка, представляет многоклеточную массу, окруженную оболочкой из двух роговых слоев, между которыми имеется прослойка воздуха с мелкими кремнеземными иглами, поставленными перпендикулярно к поверхности геммулы. Зимой тело бадяги умирает и распадается, а геммулы падают на дно и, защищенные своей оболочкой, сохраняются до следующей весны. Тогда содержащаяся внутри геммулы клеточная масса выползает наружу, прикрепляется ко дну и развивается в новую губку.

Большая часть губок (в том числе все известковые губки) гермафродиты, часть видов раздельнополы. Половые клетки их происходят из амебоидных клеток (археоцитов), ползающих в мезоглее. Они залегают в мезоглее под энтодермой жгутиковых камер. Живчики выходят в полость канальной системы, выводятся через оскулум, проникают в другие особи губок, имеющие зрелые яйца, и оплодотворяют последние. Начальные стадии развития яйца протекают внутри материнского организма.

23. губки строение

Губки имеют форму мешка или глубокого бокала, который основанием прикреплен к субстрату, а отверстием, или устьем (osculum), обращен кверху ( рис. 74 ). Помимо этого отверстия стенки губки пронизаны тончайшими порами, ведущими извне во внутреннюю, парагастральную полость.

Тело состоит из двух слоев клеток: наружного - дермального (эктодерма) и внутреннего, выстилающего внутреннюю полость, - гастрального (энтодерма). Между ними выделяется мезоглея - слой особого бесструктурного вещества с отдельными разбросанными в нем клетками. У большинства губок мезоглея сильно утолщается. В мезоглее формируется также скелет. Наружный слой клеток губок в виде плоского эпителия. Мельчайшие поровые канальцы, проходящие через стенки тела губки, открываются наружу, пронизывая отдельные клетки наружного слоя (пороциты). Гастральный слой слагается из особых воротничковых клеток (хоаноцитов). Они имеют цилиндрическую форму ( рис. 75 ), а из центра свободного, торчащего в парагастральную полость конца клетки выдается длинный жгутик, основание которого окружено цитоплазматическим воротничком. Такое строение клеток среди всех Metazoa наблюдается почти исключительно у губок, а среди Protozoa - лишь у Choanoflagellata , или воротничковых жгутиконосцев.

Электронно-микроскопическое исследование хоаноцитов показало, что их тонкое строение полностью совпадает с таковым Choanoflagellata.

Наиболее простую форму строения губок называют типом аскон. Однако у большинства видов эта стадия преходяща и характерна только для молодых особей. Усложнение во время индивидуального развития приводит к возникновению форм типа сикон ( рис. 74) или, если этот процесс идет еще дальше, к формам типа лейкон ( рис. 74 ). Эти понятия обозначают неодинаковую сложность организации губок разных групп и не соответствуют систематическим подразделениям.

Усложнение заключается главным образом в том, что мезоглея сильно утолщается и вся слагающаяся из хоаноцитов энтодерма, которая у губок типа аскон выстилает парагастральную полость ( рис. 74 ), перемещается (как бы вдавливается) внутрь мезоглеи, образуя здесь жгутиковые карманы (у сиконов, рис. 74 ) или округлые небольшие жгутиковые камеры (у лейконов, рис. 74 , рис. 77 ). При этом парагастральная полость изнутри у сиконов и лейконов (в отличие от асконов) оказывается выстланной плоскими клетками дермального слоя (эктодермой).

Между внешней средой и парагастральной полостью связь осуществляется при помощи системы каналов, состоящей из приводящих каналов, идущих от поверхности тела к жгутиковым камерам ( рис. 77 ), и из отводящих каналов, сообщающих жгутиковые камеры с парагастральной полостью. Эти каналы представляют собой глубокие впячивания эктодермы, тогда как вся энтодерма сосредоточена в жгутиковых камерах.

Число жгутиковых камер у губок велико. Например, у относительно небольшой губки Leuconia aspera (лейконоидный тип) высотой 7 см и толщиной в 1 см число жгутиковых камер превышает 2 млн. Число приводящих каналов более 80 тыс., отводящих - 5200.

23.сифонофоры

Сифонофоры (лат. Siphonophorae, =Siphonophora) — отряд пелагических стрекающих из класса гидроидных (Hydrozoa). Половозрелые стадии представляют собой колонию с высоким полиморфизмом составляющих её зооидов. В жизненном цикле сифонофор отсутствует ярко выраженное чередование поколений, характерное для многих других гидроидных. Известно около 160 видов, обитающих преимущественно в тропических морях. К сифонофорам относится ряд ядовитых форм, смертельно опасных для человека, например,португальский кораблик (Physalia physalis).