Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Фёдорова А.В. - Библия РЗА - 2004.doc
Скачиваний:
0
Добавлен:
09.01.2020
Размер:
20.91 Mб
Скачать
    1. Как определить по работе указательных реле «контроля напряжения» и «наличия земли в сети 6-35 кВ» вид неисправности или повреждения ?

      1. При замыкании на землю в сети 6-35 кВ срабатывает только указательное реле «земля в сети». При этом киловольтметр покажет нуль в поврежденной фазе и линейное напряжение в двух других не поврежденных фазах.

      2. При неисправности во вторичных цепях ТН (отключение автоматического выключателя, перегорание предохранителя во вторичных цепях ТН, обрыв или отсутствие контакта в фазе на клеммнике или в автоматическом выключателе, перегорании теплового реле в автомате) срабатывает только указательное реле «неисправность вторичных цепей напряжения ТН». При этом киловольтметр покажет перекос по фазным напряжениям, но менее линейного.

      3. При перегорании предохранителя на стороне ВН ТН или обрыве фазы на стороне ВН, срабатывают оба указательных реле «земля в сети» и «неисправность вторичных цепей напряжения ТН». При этом киловольтметр покажет половинное напряжение на отсутствующей фазе а линейные напряжения будут равны примерно 0,75 номинального.

    1. В какой последовательности следует выводить (вводить) из работы ТН на подстанциях со сложной схемой первичных соединений ?

Для предотвращения отключения двух систем шин при КЗ на одной из них в бланках переключений на вывод (ввод) в ремонт (из ремонта) ТН-1(2) СШ без совмещения с ремонтом 1(2) СШ необходимо предусмотреть рекомендуемый порядок :

  1. Вывод тн в ремонт.

    1. Переключатель цепи напряжения защит присоединений 1(2) СШ на оставшийся в работе ТН-1(2).

    2. Ввести запрет АПВ присоединений при срабатывнии ДЗШ, отключить и вывести в ремонт ТН-1(2) СШ, вывести запрет АПВ присоединений.

    3. ДЗШ включить по схеме «без фиксации».

    4. Отключить оперативный ток с ШСВ.

    5. Вывести контроль АПВ Н+ОШ на одном из присоединений, от которого производится АПВ 1(2) СШ.

  2. Ввод тн в работу.

    1. Включить оперативный ток на ШСВ.

    2. ДЗШ включить по схеме « с фиксацией».

    3. Ввести запрет АПВ присоединений при срабатывнии ДЗШ, включить в работу ТН 1(2) СШ, вывести запрет АПВ присоединений.

    4. Перевести цепи напряжения защит присоединений 1(2) СШ на ТН-1(2) СШ.

    5. Ввести АПВ шин на 1 и 2 СШ.

    1. Пояснить устройство антирезонансного ТН типа НАМИ ,

ТН серии НАМИ содержат в одном баке два трансформатора – прямой (он же и обратной) и нулевой последовательностей. Трансформатор прямой последовательности – трех фазный, трехстержневой, без боковых ярм. Его первичные обмотки соединены в звезду с изолированной от земли нейтралью. Между этой нейтралью и землей включена первичная обмотка однофазного трансформатора нулевой последовательности. На рисунке приведена принципиальная электрическая схема ТН типа НАМИ.

Схема соединения основной вторичной обмотки повторяет схему первичной обмотки. Дополнительная вторичная обмотка «3Uо» расположена на стержне трансформатора нулевой последовательности. На трех стержнях первого трансформатора помещается компенсационная обмотка. Соединенная в замкнутый треугольник без внешних выводов.

Феррорезонанс в трехфазной сети с изолированной нейтралью обычно возникает из-за несимметрии в фазных проводимостях ТН при различной степени насыщения стали магнитопроводов. В ТН серии НАМИ несимметрия не возникает, так как трансформатор нулевой последовательности всего один.

При ОЗЗ через перемежающую дугу в сети разряд емкостей происходит по первичной обмотке трансформатора нулевой последовательности. Поскольку источник напряжения в нулевой последовательности отсутствует, разряд носит затухающий характер. При этом, как показывают эксперименты с реальной дугой. Больших восстанавливающихся напряжений на дуговом промежутке не возникает. Однополярная дуга с зажиганием один раз в период отсутствует. Следовательно нет и больших намагничивающих токов и перегрева в первичной обмотке ТН.

При феррорезонансе в сети 6-10 кВ, на одной из фаз сети может достигнуть трехкратного значения, и на дополнительной вторичной обмотке ТН появится напряжение примерно 300 В. Это может быть опасным не только для устройств РЗА, но и для самого ТН.

Рис.5.3.Принципиальная электрическая схема соединения обмоток трансформатора НАМИ.

Чтобы антирезонансный ТН мог выдержать такое воздействие длительно, номинальная индукция в магнитопроводе транформаторе нулевой последовательности снижена в 4 раза.

НАМИ имеют следующие характеристики:

  • ТН выдерживает однофазные металлические и дуговые замыкания на землю без ограничения длительности;

  • ТН не вступает в феррорезонанс с емкостями любой сети, в том числе и с емкостями ненагруженных шин;

  • ТН выдерживает повышение напряжения, вызванное феррорезонансом между емкостями и индуктивностями намагничивания других трансформаторов, как силовых, так и измерительных;

  • В связи с высоким напряжением на выводах Ад-Хд (до 300 В) при феррорезонансе в сети рекомендуется устанавливать реле напряжения РН-54/200 вместо РН-54/60Д;

  • ТН имеет пониженную предельную мощность дополнительной вторичной обмотки. Поэтому включать дополнительные гасительные сопротивления 25 Ом (400 Вт) на выводы Ад-Хд не допускается;

  • Для защиты цепей напряжения от повреждений следует применять автоматические выключатели с кратностью отсечки 3,5 Jн.

    1. Действительно ли ТН типа НАМИ-10 является антирезонансным ?

НАМИ – называется «антирезонансным», что является спорным. Антирезонансными могу быть только трансформаторы без заземления высоковольтных обмоток, например ТН типа НОМ, обмотки которого соединены по схеме «открытого треугольника». Однако при использовании этой схемы невозможен контроль состояния изоляции высоковольтной электрической сети. Для исключения указанного недостатка у ТН НАМИ-10 высоковольтная обмотка фазы В заземлена. При этом условии резонанс возможен в нормальном режиме работы только для фазы В трансформатора и при замыкании на землю фаз А или С.

Во всех случаях токи резонанса будут протекать по фазе В и их значение будет целиком зависить от прилагаемого напряжения к обмотке ВН фазы В. В нормальном режиме – это фазное напряжение, при однофазном замыкании на землю – линейное напряжение. Наиболее опасным режимом является работа с перемежающейся дугой при однофазном замыкании на землю, когда в каждый момент зажигания дуги напряжение может достигать значения 2,2 Uф. В эксплуатационной документации НАМИ-10 указывается, что при возникновении феррорезонанса в сети напряжение 3Uо на выводах Ад и Хд может достигать 250-300 В. Такое напряжение может возникнуть при феррорезонансе толко самого ТН НАМИ-10.[35].

    1. Как измерить коэффициент трансформации ТН с дополнительной обмоткой (НТМИ)?

Особо измеряется коэффициент трансформации ТН с дополнительной обмоткой, соединенной в «разомкнутый треугольник» и имеющий только два вывода Ад и Хд. Для этого обмотку ВН ТН возбуждают (подают испытательное напряжение) однофазным или трехфазным напряжением 50 Гц. Однофазное напряжение поочередно подключается к выводам первичной обмотки А, В, С и нейтрали, тогда при закороченных двух других выводах (А-В+С; В-А+С; С-А+В) и соединенных с выводом нейтрали измеренный коэффициент трансформации должен соответствовать отношению значений первичного напряжение и измеренному на выводах Ад и Хд, т.е. проверяемому коэффициенту трансформации ТН.

При возбуждении (подачи напряжения) первичной обмотки ТН, трехфазным напряжением и закорачивании одной из фаз первичной обмотки ТН на нейтраль измеренное значение напряжения на выводах Ад-Хд дополнительной обмотки должно быть в три раза больше измеренного значения на однофазной схеме, т.е. 3Uф. Правильность соединения обмоток «разомкнутого треугольника» проверяется возбуждением первичной обмотки ТН и измерении напряжения на выводах Ад-Хд, значение которого должно быть равно напряжению небаланса 1-3 В ( в этом опыте ни одна первичная обмотка ТН не соединяется с выводом нейтрали).[7]

    1. Влияет ли чередование фаз при подключении ТН типа НАМИ в сеть ?

ТН типа НАМИ имеет угловую компенсацию погрешностей и требует прямого чередовани фаз первичной сети. Оно должно быть (А-В-С). Обратное чередование фаз приведет к резкому увеличению угловой погрешности и выходу ТН из гарантированного класса точности.

    1. Какие приборы применяются при измерении напряжения небаланса в «разомкнутом треугольнике» ТН-110 кВ и выше ?

В связи с тем что в протяженных цепях 3Uо обычно наводится напряжение посторонними магнитными полями, соизмеримое с напряжением небаланса Uнб, измерение Uнб вольтметром с большим внутренним сопротивлением может дать примерно одинаковые результаты при проверке исправной цепи.

В связи с этим для обеспечения правильных результатов проверки напряжение небаланса должно измеряться вольтметром с внутренним сопротивлением не более 200 Ом. Обычно вместо вольтметра применяют миллиамперметр до 100 мА и внутренним сопротивлением 50 Ом. Его включают через резистор 100 Ом. Максимальному отклонению прибора соответствует напряжение 3Uо = 15 В. При измерении прибор подключается к цепи 3Uо кнопкой SB, как показано на рисунке 5.4.[44]:

Рис. 5.4. Схема контроля небаланса в «разомкнутом « треугольнике ТН.

    1. Как определить нагрузку вторичных цепей ТН ?

Предварительный расчет для определения нагрузки и требуемой мощности ТН может быть выполнено по данным о потреблении определенных реле и приборов, подключенных к цепям напряжения. Недостающие данные о потреблении отдельных реле, приборов или устройств могут быть получены путем измерения.

При питании вторичной нагрузки от трехфазного ТН с его мощностью в нужном классе точности (по каталогам, паспорта) сопоставляется утроенная мощность нагрузки наиболее загруженной фазы. Мощность нагрузки находящегося в работе ТН измеряется известными способами измерения (вольтметр или расчет по измеренными фазному току и напряжению):

Sф =Uл/ · Jф или Sф = Uф ·Jф

Для трехфазных ТН мощность фаз суммируется. Для «разомкнутого треугольника» ТН в режиме однофазного КЗ:

Sтн = Iнагр.·100

Где Iнагр. – нагрузка цепи «разомкнутого треугольника»[44].

    1. Как выбрать автоматические выключатели во вторичных цепях ТН ?

Автоматические выключатели (автоматы) выбираются на основе расчетов токов КЗ во вторичных цепях ТН с учетом возможного увеличения нагрузки при резервировании другого ТН. Коэффициент чувствительности электромагнитного расцепителя (отсечки) автомата – отношение минимального значения тока КЗ к наибольшему току срабатывания этого расцепителя, должен быть не менее 1,5.

Тепловые расцепители имеют такие же номинальные токи, как и электромагнитные. При этом они начинают работать при токе 1,35Iном ± 25% и обеспечивают надежное действие при токе около 1,7 Iном.

Для обеспечения должной чувствительности электромагнитных расцепителей при КЗ во всех случаях применять кратность срабатывания 3,5 Iн.

При отсутствии автомата на нужный номинальный ток с кратностью 3,5 допускается производить перемотку его электромагнитных расцепителей в лаборатории, мастерской.

Ввиду относительно большого тока срабатывания электромагнитного расцепителя (разброс 3-4Iн) для повышения чувствительности автомата к удаленным КЗ и внутриаппаратным повреждениям рекомендуется применение автоматов с электромагнитным и тепловым расцепителями.

Выбор автоматов в цепи основных обмоток при включении на линию ТН типа НКФ должен производиться с учетом необходимости отстройки отсечки автомата от бросков емкостного тока, возникающих при снятии напряжения с линии высокого напряжения. Эти кратковременные броски тока проходят во вторичных цепях через трансформаторы для регулирования уставок дистанционных защит и могут быть порядка 60-80 А.

Для чего ток срабатывания электромагнитного расцепителя принимается равным

Iср = Кн I

Где Кн – коэффициент надежности равный 1,3;

I – максимальное значение емкостного тока во вторичных цепях.

При кратности срабатывания 3,5 номинальный ток расцепителя автомата должен быть

Iном.расч. = Кн I /3,5

Эффективность такой отстройки от бросков емкостного тока должно проверяться при наладке.

Номинальный ток неселективного автомата, устанавливаемого на щите в цепи удаленных нагрузок, рекомендуется всегда применять равным 2,5 А.

В цепи 3Uо ТН до 35 кВ должен устанавливаться автомат только с тепловым расцепителем, чтобы не разрывать цепь 3Uо при повреждениях между проводами Н и И . При отсутствии провода И автомат в цепь 3Uо должен иметь только электромагнитный расцепитель.

Ликвидация КЗ даже на наиболее удаленных панелях реле защиты и автоматики с помощью теплового расцепителя недопустима. Поэтому при недостаточной чувствительности электромагнитного расцепителя следует для повышения коэффициента чувствительности до Кч≥1,5 увеличить ранее выбранное по допустимой потере напряжения сечение жил кабелей до этой панели. Сечение жил кабеля от ТН к панели защиты должно быть таким, чтобы при максимальной нагрузке на ТН падение напряжения в кабеле было не более 3%.[44].

5.25. Как правильно включить нагрузку на ТН включенных в открытый треугольник ?

При включении ТН, соединенных в открытый треугольник, нагрузка на напряжение Uса не подключается, так как возникают значительные погрешности. Трансформатор типа НАМИ-10 имеет аналогичный недостаток. Если напряжение Uса будет равно Uл, значит, изменена

маркировка одного из трансформаторов.[35].

Рис. 5.5. Схема соединений однофазных трансформаторов напряжения в открытый треугольник.

    1. Какую роль играют высоковольтные предохранители в цепи ТН ?

Высоковольтные предохранители не защищают ТН при повреждении как со стороны НН, так и в самом трансформаторе. Они исключают возможность погашения всей секции при повреждении в ячейке ТН Использование плавкой вставки высоковольтных предохранителей, чувствительность к КЗ на выводах и в самом ТН, не представляется возможным, так как она будет перегорать от броска тока намагничивания при его включении.[35].

    1. Укажите назначение трансформаторов напряжения серии СР?

Трансформаторы напряжения измерительные однофазные емкостного типа «СР» на номинальные напряжения 110-500 кВ новый тип ТН. Пример записи обозначения трансформатора:

«Трансформатор напряжения измерительный однофазный емкостной типа СРА123»

Расшифровка записи обозначения:

СР – серия трансформатора,

А – типоисполнение трансформатора (имеются типоисполнения А и В),

123 – обозначение класса напряжения трансформатора. Класс 123 соответствует номинальному напряжению сети 110 кВ, 245 – 220 кВ 362 – 330 кВ, 550 – 500 кВ.

Трансформаторы предназначены для передачи сигнала измерительной информации измерительным приборам (в том числе – при техническом и коммерческом учете электроэнергии), устройствам защиты и управления, а также обеспечивания высокочастотной связи (при частотах от 30 кГц до 500 кГц) в электрических системах 50 или 60 Гц с заземленной нейтралью при включении по схеме «фаза – земля». Трансформатор состоит из трех основных частей:

- емкостного делителя напряжения типа CSA или CSB,

- электромагнитного блока типа ЕОА или ЕОВ,

- вспомогательного оборудования для реализации режима высокочастотной связи.