
- •2 Энергетическое топливо
- •В котельных установках промышленных предприятий в качестве твердого топлива применяются различные угли:
- •3 Тепловой баланс котельной установки
- •Член Qпар, мДж/кг, учитывает теплоту, вносимую в агрегат паром при паровом распыливании мазута или при подаче под решетку пара для улучшения ее работы при слоевом сжигании антрацита
- •4 Расход топлива и кпд котла
- •5 Определение потерь теплоты в котельном агрегате.
- •5.3 Потеря теплоты от механической неполноты сгорания
- •5.5 Потеря с физической теплотой шлака
- •6 Классификация топочных устройств промышленных котлов. Сжигание газа в топках котлов
- •6.1 Классификация топок
- •Показателями работы топочных устройств являются:
- •6.3 Сжигание газа в топках котлов
- •7 Классификация газовых горелок. Сжигание газа с низкой и высокой теплотой сгорания
- •8 Сжигание мазута в топках котлов.
- •9 Сжигание твердого топлива. Слоевое сжигание.
- •По высоте восстановительной зоны содержание со2 в газе уменьшается, а со – соответственно увеличивается.
- •10 Конструкции слоевых топок с цепными решетками.
- •11 Схемы приготовления угольной пыли.
- •11.1 Основные схемы пылеприготовления
- •11.4 Циклонные и вихревые топки
- •12 Классификация и конструкция пылеугольных горелок. Комбинированные горелочные устройства
- •12.1 Пылеугольные горелки
- •12.3 Расположение горелок на стенках топочной камеры
- •13 Теплообмен в элементах парового котла. Методика конструктивного и поверочного расчета
- •13.2 Теплообмен в топке
- •13.5 Геометрические характеристики топочной камеры
- •13.6 Методика конструктивного и поверочного расчета
- •13.6.1 Конструктивный расчет топки расчет топки Площадь поверхности стен топочной камеры
- •13.6.2 Расчет пароперегревателя
- •13.6.3 Расчет экономайзера
- •13.6.4 Расчет воздухоподогревателя
- •14 Теплообмен в полурадиационных поверхностях теплообмена
- •15 Тепловая схема котельного агрегата
- •16 Выбор температуры уходящих газов и подогрева воздуха в котельной. Примеры тепловых схем
- •16.1 Температура уходящих газов
- •16.2 Температура подогрева воздуха
- •16.3 Примеры тепловых схем
- •17 Характеристика и конструкции котлов. Энергетические котлы с естественной циркуляцией
- •17.1 Характеристики и конструкции котлов
- •17.2 Энергетические котлы с естественной циркуляцией
- •18 Прямоточные котлы с многократной циркуляцией. Котлы специального назначения
- •18.2.3 Передвижные котлы
8 Сжигание мазута в топках котлов.
КЛАССИФИКАЦИЯ И КОНСТРУКЦИИ МАЗУТНЫХ ГОРЕЛОК
Сжигание мазута в топках котлов характеризуется тем, что он сгорает в парогазовой фазе, т.к. температура кипения жидких топлив значительно ниже температуры их воспламенения. Поступившее в топочное пространство жидкое топливо за счет теплоты топочных газов подогревается, а затем испаряется. В первую очередь испаряются его наиболее легкие фракции. Интенсивность испарения увеличивается с ростом относительной его поверхности и усилением подвода теплоты.
При наличии окислителя и достижении температуры воспламенения происходит загорание образовавшейся горючей парогазовой смеси. Выделившаяся при этом теплота способствует еще более интенсивному испарению топлива. Скорость сгорания жидкого топлива определяется скоростью его испарения с поверхности; эта поверхность многократно увеличивается при распыливании жидкого топлива на отдельные мельчайшие капли, для чего и применяются специальные устройства-форсунки.
Поскольку интенсивность сжигания жидкого топлива определяется в значительной мере интенсивностью его испарения, важнейшим и первым этапом подготовки жидкого топлива к сгоранию является распыление его на мельчайшие частицы.
При распылении жидкого топлива получают капли различных размеров. При рассмотрении горения жидких топлив следует помнить, что горючая их часть состоит из различных углеводородов, сжигание которых идет с образованием промежуточных соединений и зависит от содержания окислителя в горючей смеси и температуры.
В реальном факеле отдельные его участки имеют различные избытки окислителя и различную температуру. Горючая часть мазутного факела может представлять собой смесь легких паро- и газообразных углеводородов, тяжелых жидких углеводородов и даже твердых частиц (сажа). Следовательно, необходимый для горения воздух надо подавать в корень факела, что способствует усилению окислительных реакций и ослабляет несимметричное расщепление углеводородов.
Процесс сжигания жидкого топлива включает в себя следующие этапы:
– распыление топлива;
– образование горючей смеси, состоящей из продуктов испарения и термического разложения углеводородов и окислителя;
– воспламенение горючей смеси;
– горение горючей смеси. Эффективность сжигания жидкого топлива зависит от первых подготовительных этапов, определяемых работой форсунки.
8.1 Схемы распыления жидкого топлива. Мазутные форсунки
По способу распыливания жидкого топлива форсунки можно разделить на три основные группы:
– механические;
– с распыливающей средой;
– комбинированные.
В механических форсунках распыливание осуществляется главным образом за счет энергии топлива при продавливании его под значительным давлением через малое отверстие – сопло (рис.9а), или за счет центробежных сил, создаваемых при закручивании топлива (рис.9б), или при вращении элементов самой форсунки (рис.9в). В форсунках с распыливающей средой распыливание топлива осуществляется главным образом за счет энергии движущегося с большой скоростью распыливателя – пара или воздуха (рис.9г и 9д). В комбинированных форсунках (9е) распыливание топлива осуществляется за счет совместного использования энергии топлива, подаваемого под давлением, и энергии распыливающей среды.
8.2 Распыливание мазута механическими форсунками
При механическом распыливании качество последнего в значительной мере зависит от давления мазута, создаваемого насосом. Обычно мазут поступает к форсункам под давлением 2,0÷3,5 МПа. Наличие механических примесей в мазуте и малые выходные отверстия форсунок (1,5÷3,5мм) обуславливают необходимость тщательной фильтрации мазута перед сжиганием.
Производительность форсунок регулируют изменением давления мазута перед форсункой, вследствие чего они имеют малый диапазон регулирования.
Имеются специальные конструкции механических форсунок, позволяющие регулировать производительность в достаточно широком диапазоне (форсунки с рециркуляцией мазута, вращающиеся и др. ).
8.3 Распыливание мазута форсунками с распыливающей средой
Для распыливания мазута форсунками высокого давления применяют пар или компрессорный воздух, а форсунками низкого давления – воздух, подаваемый вентилятором.
При паровой пульверизации мазута применяют пар давлением 0,5÷2,5 МПа, удельный расход пара при этом составляет 0,3÷0,35 кг/кг мазута.
При воздушной пульверизации мазута в форсунках высокого давления воздух, подаваемый компрессором, имеет давление 0,3÷0,6 МПа, а удельный расход составляет 0,6÷1 кг/кг мазута. В форсунках высокого давления относительная скорость распыливающего агента доходит до 1000м/с, чем обеспечивается хорошее дробление капелек мазута с получением тонкого распыла. Менее жесткие требования предъявляются к очистке мазута.
Паровые высоконапорные форсунки характеризуются значительным потреблением энергии – на распыливание мазута расходуется до 5% выработки пара котлом. Паровые форсунки характеризуются высоким качеством распыления, регулирование производительности осуществляется в широких пределах. Однако паровое распыливание мазута приводит к потере конденсата, к повышенному содержанию Н2О в уходящих газах, что ведет к увеличению q2, а также к усилению коррозии поверхностей нагрева. Работа таких форсунок отличается повышенным шумом.
В высоконапорных форсунках с воздушным распыливанием мазута воздух не только распыливает топливо, но и интенсифицирует горение.
В форсунках с распыливающей средой низкого давления применяют воздух под давлением 0,002 – 0,007 МПа. Через форсунку подают 50 – 100 % воздуха, необходимого для сгорания мазута, поэтому такие форсунки имеют относительно большие размеры.
Таким образом, механические форсунки по сравнению с форсунками с распыливающей средой требуют более тонкой очистки мазута, дают более грубое распыливание, имеют относительно малый диапазон изменения их производительности.
Важнейшим преимуществом механических форсунок перед паровыми является значительно меньший расход энергии на собственные нужды, не вызывают увеличения содержания водяных паров в продуктах сгорания. Они создают при работе значительно меньший шум, более компактны. Механические форсунки дают более короткий факел с большим углом раскрытия.
С учетом этого для котлов средней и большой производительности при постоянной работе на мазуте применяются механические форсунки как наиболее экономичные. Паровые форсунки применяются для котлов малой производительности, а также в качестве растопочных.
8.4 Распыливание мазута комбинированными форсунками
Устранением основного недостатка механических форсунок – малого диапазона регулирования производительности, достигается применением комбинированного паромеханического распыливания мазута. Используемые для этого форсунки при повышенных нагрузках котла работают как механические, а при малых нагрузках (менее 60 %), а также в пусковых режимах в них подают также пар. Ротационные форсунки не требуют тщательной фильтрации мазута, дают хорошее распыливание и обладают широким диапазоном регулирования производительности (15÷100% ).
Недостатками таких форсунок являются сложность конструкции и шум при работе. В промышленности широко используются комбинированные горелки для раздельного и совместного сжигания мазута и газа. За основу создания таких горелок принимают обычные газовые горелки, в центральную часть которых устанавливают мазутную форсунку. При сжигании мазута воздух нагревается до t =200÷300C. Дополнительная интенсификация распыливания мазута достигается подачей воздуха в топку через регистры в виде отдельных струй со скоростью 40÷50 м/с.
Мазут – топливо малозольное Ар ≤ 0,3% , поэтому специальное устройство для удаления золы из топки не предусматривается. Однако при сжигании мазута возникают затруднения с удалением золы с поверхности нагрева котла, что связано с наличием в отложениях легкоплавких соединений ванадия и щелочных металлов, приводимых к высокотемпературной коррозии труб и подвесок пароперегревателей.
Содержащаяся в мазуте сера при сгорании образует в основном сернистый ангидрид SO2. Незначительная часть серы сгорает до SO3 – сернистого ангидрида, который, соединяясь с водяными парами, дает серную кислоту. Для снижения в продуктах сгорания содержание серного ангидрида сжигание мазута ведут с предельно малым коэффициентом избытка воздуха, близким к единице Т = 1,05÷1,1. При этом температура точки росы существенно снижается. Снижение Т приводит также к значительному снижению концентрации оксидов азота NOХ в продуктах сгорания мазута.
а — прямоструйная; б — центробежная; в —с вращающейся чашей; г —высокого давления; д — низкого давления; е — комбинированная.
Рисунок 8.1 - Схема форсунок для распыливания жидкого топлива
1 — колодка с соединительными и крепежными деталями; 2 — ствол;
3 — распределитель; 4 — завихритель; 5 — сопло; 6 — гайка накидная.
Рисунок 8. 2 - Форсунка механическая средняя типа ОН-547
1 - колодка; 2 - ствол; 3 - сопло; 4 – диффузор; 5 – насадка.
Рисунок 8.3 - Форсунка паровая типа ФП
1 - ствол; 2 - распределитель; 3 - завихритель топливный;
4 - сопло паровое; 5 - гайка; 6 - гайка накидная
Рисунок 8.4 - Распылительная головка паромеханической
форсунки типа ФПИ:
I — первичный воздух
Рисунок 8.5 - Ротационная форсунка
1 - заглушка; 2 - мазутная форсунка; 3 - газовоздушная часть; 4 - лопаточный завихритель вторичного воздуха; 5 - лопаточный завихритель первичного воздуха; 6 - монтажная плита; 7 - место установки запальника
Рисунок 8.6 - Газомазутная горелка типа ГМГм