Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ПЕРЕХОДНЫЕ ПРОЦЕССЫ(часть1)-лекции.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
28.59 Mб
Скачать

2.2.4. Порядок составления схемы замещения

Если исходная расчетная схема не содержит трансформаторы, то есть имеет одну ступень напряжения, то при составлении схемы замещения такая схема не нуждается в эквивалентировании, так как все ее элементы находятся на одной и той же ступени напряжения. Например, схема на рис.2.1.

Рис.2.1.

Если же расчетная схема имеет вид, приведенный на рис.2.2., то такую схему нужно эквивалентировать, то есть параметры всех элементов схемы следует привести к одной (основной) ступени напряжения. Выбор основной ступени напряжения произволен, однако в ходе решения конкретной задачи он должен оставаться неизменным.

Рис.2.2.

Для приведения схемы замещения к эквивалентному виду при расчете токов к.з. в относительных единицах следует выбрать значение базисной мощности , которая остается одной и той же для всех ступеней напряжения, то есть . (2.15)

Базисные напряжения для каждой ступени напряжения будут иметь различные значения. Для определения базисных напряжений других ступеней напряжения при произвольно принятой ступени напряжения в качестве основной (базисной), следует исходить из общей теории трансформатора и определять их значения по формуле

, (2.16)

где - базисное напряжение ступени; - базисное напряжение ступени, принятую за основную базисную; -коэффициенты трансформации трансформаторов на пути от ступени, принятой за основную базисную, к ступени напряжения, базисное напряжение которой определяется.

Формула (2.16) используется тогда, когда известны коэффициенты трансформации, то есть ведется точное приведение.На практике (при отсутствии действительных значений коэффициентов трансформации) нередко пользуются приближенным методом эквивалентирования, который часто обеспечивает приемлемые результаты. В этом случае за базисные напряжения ступеней принимают средние значения этих ступеней согласно табл.2.1.

Таблица 2.1

Шкала средних номинальных напряжений ступеней

Ступень напряжения, кВ

Среднее напряжение ступени,

принимаемое за базисное, кВ

6

6,3

10

10,5

35

37

110

115

220

230

2.2.5. Способы приведения схем замещения к простейшему виду

Одним из условий расчета токов к.з. является необходимость приведения исходной схемы замещения к простейшему виду (рис.2.3), то есть к получению значений результирующей э.д.с. Е и результирующего сопротивления Х для исходной схемы.

Рис.2.3.

Для этой цели используют методы, известные из курса теоретических основ электротехники (ТОЭ)[1]. Так значения последовательно включенных сопротивлений суммируются, для параллельно включенных –суммируются их проводимости, а для смешанных схем соединений применяют оба способа. Сеть, состоящая из последовательных, параллельных и смешанных схем соединения сопротивлений является простой сетью, и она легко приводится к простейшему виду.

Если сеть содержит замкнутые контуры, то она является сложной, и для приведения ее к простейшему виду следует использовать другие приемы. Рассмотрим некоторые из них.

а)Замена нескольких генераторных ветвей, сходящихся в одной точке, одной эквивалентной.

Пусть имеется схема замещения (рис.2.4), содержащая генераторных ветвей, сходящихся в одной точке.

Рис.2.4.

Согласно [1] эквивалентная э.д.с., то есть э.д.с. генератора, которая заменяет э.д.с . генераторов и эквивалентное сопротивление, могут быть определены по формулам:

; (2.17)

, (2.18)

где - проводимости генераторных ветвей.

б)Преобразование многолучевой звезды в соответствующий многоугольник

В этом случае (рис. 2.5, а), сохраняя опорные точки звезды , получают многоугольник (рис.2.5, б)

Рис.2.5.

Сопротивления сторон многоугольника определяют по формуле

(2.19)

где - сопротивление стороны многоугольника ;

-сопротивления лучей звезды и ;

-сумма проводимостей всех лучей звезды.

Далее, получив многоугольник, рассекают точку и получают схему (рис.2.6), дальнейшее преобразование которой не вызывает затруднений.

Рис.2.6.

в)Преобразование трехлучевой звезды в треугольник и наоборот (рис.2.7)

Рис.2.7.

В качестве примера приведем формулы для определения и

; (2.20)

. (2.21)

г) Металлическое трехфазное к.з. находится в узле с несколькими сходящимися в нем ветвями (рис.2.8, а).

В этом случае этот узел можно разрезать, сохранив на конце каждой образовавшейся ветви такое же к.з. Далее полученную схему нетрудно преобразовать относительно любой из точек к.з., учитывая другие ветви с к.з., как нагрузочные с э.д.с, равными нулю (рис.2.8, б).

Рис.2.8.

На практике часто встречается симметрия схемы относительно точки к.з. или симметрия какого-нибудь участка схемы относительно некоторой промежуточной точки. Наличие симметрии позволяет существенно упростить преобразование схемы замещения. Например, если в схеме (рис.2.8,а), элементы, расположенные симметрично относительно элемента 7, одинаковы, то потенциалы узлов, где присоединены ветви 1 и 3, также одинаковы, что позволяет эти узлы закоротить и образовавшиеся параллельные ветви 1 и 3, 4 и 5, 6 и 8 заменить эквивалентными. При этом вместо двух контуров схема теперь содержит один контур, преобразовав который в эквивалентную звезду, просто привести схему к простейшему виду (рис.2.9).

Рис.2.9.

Если в схеме рис.2.8 генерирующие ветви 1, 2 и 3 одинаковы, а также одинаковы элементы 6, 7 и 8, то наличие элементов 4 и 5 при рассматриваемом положении точки к.з. никак не сказывается, то есть каждая генерирующая является независимой.

В общем случае, когда элементы рис.2.8 различны (сопротивления и э.д.с.) для ее упрощения можно трехлучевые звезды 1, 4, 6 и 3, 5, 8 заменить эквивалентными треугольниками (рис.2.10, а), затем разрезать их вершины, где приложены э.д.с., и образовавшиеся параллельные ветви (11, 7, 13) заменить эквивалентной (рис.2.10, б, в, г).

Рис.2.10.

д)Разнесение мощностей или токов, подходящих к вершине треугольника сопротивлений (рис.2.11, а, б) по ветвям разомкнутого треугольника (рис.2.11, в)

При разнесении мощности расчетные соотношения имеют вид:

; ; . (2.22)

Рис.2.11.

a-исходная принципиальная схема;б-схема замещения;

в-схема замещения после преобразования

При расчете линейных электрических цепей часто удобно использовать принцип наложения. Согласно этому принципу действительный режим получают как результат наложения ряда условных режимов, каждый из которых определяется в предположении, что в схеме приложена одна (или группа) э.д.с., в то время как все остальные равны нулю; при этом все элементы схемы замещения остаются включенными.

При большом числе э.д.с. расчет токов к.з. при применении принципа наложения в такой форме становится громоздким и слишком неудобным.

В этой связи при рачете токов к.з. обычно используют следующие формы принципа наложения:

1)Наложение собственно аварийного режима на предшествующий

Дело в том, что условия металлического трехфазного к.з. не изменятся, если представить, что в точке к.з. приложены две равные, но взаимно противоположные э.д.с, величина которых может быть произвольной. В частности, ее можно принять раной напряжению, которое было в этой точке до возникновения в ней к.з.

При таком подходе режим в схеме замещения после возникновения к.з. удобно представить состоящим из двух режимов.

Первый режим получают, учитывая все э.д.с. генераторов до возникновения к.з., и дополнительную э.д.с., введенную в точку к.з., равную ( в данной точке).

Очевидно, то одновременное действие этих э.д.с. дает предшествующий режим в рассматриваемой схеме замещения.

Второй режим получают путем введения только одной э.д.с. в точке к.з., равной . Этот режим называют собственно аварийным, а получающиеся при нем токи и напряжения – аварийными составляющими токов и напряжений.

Суммируя токи и напряжения предшествующего режима с их аварийными составляющими, получают действительные величины токов и напряжений в схеме замещения при металлическом трехфазном к.з. в заданной точке, то есть

; . (2.23)

Здесь , так как .

2)Применение собственных и взаимных сопротивлений и проводимостей

В схеме с произвольным числом э.д.с. для тока, например, источника 1, считая положительным направлением тока путь от источника к внешней сети, по принципу наложения можно записать:

, (2.24)

где каждый из токов обусловлен действием лишь одной э.д.с. при равенстве нулю остальных, то есть - собственный ток источника 1, созданный только его э.д.с. ; - взаимный ток ветви 1, вызванный действием только э.д.с. и т.д.

Здесь - соответственно, собственная и взаимные проводимости источника 1 в рассматриваемой схеме.

Аналогично для тока в месте к.з. (считая, что в месте металлического трехфазного к.з. имеется источник с э.д.с., равной нулю) получим

, (2.25)

где взаимные проводимости между каждым источником и точкой к.з.

Выражения (2.24) и (2.25) особенно удобны, когда нужно выявить индивидуальные свойства отдельных источников или учесть влияние изменения величины и фазы отдельных э.д.с. на искомые значения токов.

Собственные и взаимные сопротивления или проводимости находят с помощью так называемого способа токораспределения ( или называемый методом единичных токов) или путем преобразования исходной схемы замещения. Иногда целесообразно использовать оба приема совместно, то есть вначале произвести ряд преобразований схемы, а затем применить метод токораспределения.

В расчетах к.з. часто приходится определять только взаимные сопротивления между точкой к.з. и отдельными источниками (или группами их). Для этого удобно использовать следующий прием. Приняв ток в месте к.з. за единицу и считая все приведенные э.д.с. одинаковыми, нужно произвести распределение этого тока (равного единице) в заданной схеме замещения. Полученные доли этой единицы для отдельных источников: С , называемые коэффициентами распределения, при отсутствии нагрузок в схеме они характеризуют участия каждого источника в питании к.з. Если результирующее сопротивление схемы относительно места к.з. , то, очевидно, можно записать равенства:

1. Z, (2.26)

откуда искомое взаимное сопротивление между точкой к.з. и соответ-

ствующим источником будет:

Zn. (2.27)