
- •О.В. Савенко
- •Органическая химия (курс лекций)
- •Общая характеристика органических соединений
- •Теория строения органических соединений
- •Атомы в молекулах соединены между собой в определенном порядке химическими связями согласно их валентности; углерод во всех органических соединениях четырехвалентен.
- •Свойства вещества определяются не только качественным составом, но и его строением, взаимным влиянием атомов, как связанных между собой химическими связями, так и непосредственно не связанных.
- •Строение молекул может быть установлено на основе изучения их химических свойств.
- •Формулы органических соединений
- •Классификация органических соединений
- •Номенклатура органических соединений
- •Изомерия органических соединений
- •Взаимное влияние атомов в молекуле и реакционная способность органических соединений
- •Общая характеристика органических реакций
- •Промышленное производство органических соединений
- •Глава 21. Алканы Номенклатура и изомерия
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Применение
- •Глава 22. Циклоалканы Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Глава 23. Алкены (олефины) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 24. Алкадиены (диеновые углеводороды) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 25. Алкины (ацетилены) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 26. Ароматические углеводороды (арены) Номенклатура и изомерия
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Правила ориентации (замещения) в бензольном кольце
- •Применение
- •Глава 27. Гидроксильные соединения (спирты)
- •Одноатомные спирты (алкоголи) Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Многоатомные спирты
- •Получение
- •Химические свойства
- •Применение
- •Физические свойства
- •Способы получения
- •Химические свойства
- •Применение
- •Глава 28. Карбонильные соединения (оксосоединения) Номенклатура и изомерия
- •Метаналь этаналь
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 29. Карбоновые кислоты Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Глава 30. Сложные эфиры. Жиры Номенклатура и изомерия
- •Физические свойства
- •Химические свойства
- •Жиры и масла
- •Глава 31. Углеводы (сахара)
- •Моносахариды Номенклатура и изомерия
- •Физические и химические свойства глюкозы
- •Дисахариды
- •Полисахариды
- •Глава 32. Амины
- •Предельные алифатические амины Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Применение
- •Ароматические амины
- •Физические свойства
- •Химические свойства
- •Применение
- •Глава 33. Аминокислоты, пептиды и белки
- •Аминокислоты Номенклатура и изомерия
- •Физические свойства
- •Получение
- •Химические свойства
- •Пептиды
- •Физические свойства
- •Химические свойства
- •Биологическое значение белков
- •Глава 34. Гетероциклические соединения
- •Шестичленные гетероциклы
- •Пятичленные гетероциклы
- •Нуклеиновые кислоты Строение нуклеиновых кислот
- •Биологическая роль нуклеиновых кислот
- •Глава 35.Синтетические высокомолекулярные соединения
- •Общая характеристика полимеров
- •Пластмассы
- •Волокна
- •Каучуки
- •Литература
- •Приложения Растворимость неорганических веществ в воде при 25°c
Пятичленные гетероциклы
Пиррол C4H4NH – пятичленный гетероцикл с одним атомом азота.
Атомы углерода и атом азота находятся в состоянии sp2-гибридизации. 4 электрона, находящиеся на не гибридных орбиталях атомов углерода, и 2 электрона на негибридной орбитали атома азота образуют π-электронную ароматическую систему.
В отличие от пиридина, электронная пара атома азота в пирроле входит в состав ароматической системы, поэтому пиррол практически лишен основных свойств.
Пиррол – бесцветная жидкость с запахом, напоминающим запах хлороформа. Пиррол слабо растворим в воде (< 6%), но растворим в органических растворителях. На воздухе быстро окисляется и темнеет.
Пиррол получают конденсацией ацетилена с аммиаком
или аммонолизом пятичленных циклов с другими гетероатомами – фурана и тиофена (реакция Юрьева):
Химические свойства пиррола:
1. Сильные минеральные кислоты могут вытягивать электронную пару атома азота из ароматической системы, при этом ароматичность нарушается, и пиррол превращается в неустойчивое соединение, которое сразу полимеризуется. Неустойчивость пиррола в кислой среде называют «ацидофобностью».
2. Пиррол проявляет свойства очень слабой кислоты. Он реагирует с калием, образуя пиррол-калий:
3. Пиррол как ароматическое соединение склонен к реакциям электрофильного замещения, которые протекают преимущественно у α-атома углерода (соседнего с атомом азота). Поскольку пиррол под действием кислот полимеризуется, то для проведения замещения используют реагенты, не содержащие протонов. Так, для нитрования пиррола используют ацетилнитрат:
а для сульфирования – комплекс пиридина с оксидом серы (VI):
4. При гидрировании пиррола образуется пирролидин – циклический вторичный амин, проявляющий значительные основные свойства.
Интересными свойствами обладают пятичленные ароматические гетероциклы, содержащие два атома азота, – имидазол и пиразол C3H4N2:
Эти соединения амфотерны. Один атом азота (пиридинового типа) в них проявляет слабые основные свойства и способен принимать
протон, а другой атом азота (пиррольного типа) входит в состав группы NH, которая проявляет слабые кислотные свойства и способна отдавать протон. Благодаря этому появляется возможность переноса протона между двумя атомами азота и некоторые производные имидазола и пиразола могут существовать в виде быстро переходящих друг в друга таутомерных форм:
Пурин – гетероцикл, включающий два сочлененных цикла: пиримидиновый и имидазольный.
Ароматическая система пурина включает 10 π-электронов (8 электронов двойных связей и два неподеленных электрона пиррольного атома азота). Пурин – амфотерное соединение. Слабые основные свойства пурина связаны с атомами азота шестичленного цикла, а слабые кислотные свойства – с группой NHпятичленного цикла.
Основное значение пурина состоит в том, что он является родоначальником класса пуриновых оснований.
Пуриновые основания – производные пурина, остатки которых входят в состав нуклеиновых кислот: аденин, гуанин.