
- •Электроника и микроэлектроника
- •1 Выпрямительный диод
- •1.1 Теоретические сведения
- •4 Гост 25529-82. Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.
- •2 Варикап
- •2.1 Теоретические сведения
- •4 Гост 25529-82. Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.
- •3 Стабилитрон
- •3.1 Теоретические сведения
- •4 Гост 25529-82. Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.
- •4 Биполярный транзистор
- •4.1.1 Устройство и принцип действия
- •5 Полевой транзистор
- •5.1 Теоретические сведения
- •5.1.1 Типы полевых транзисторов, принцип действия, область применения
- •5.1.2 Полевой транзистор с управляющим p-n-переходом
- •5.1.2.1 Устройство и принцип действия
- •5.1.2.2 Статические характеристики полевого транзистора с управляющим p-n-переходом
- •5.1.3.1 Устройство и принцип действия
- •5.1.3.2 Статические характеристики моп-транзисторов с индуцированным каналом
- •5.1.4.1 Устройство и принцип действия
- •Пример оформления отчета по лабораторной работе
5 Полевой транзистор
5.1 Теоретические сведения
5.1.1 Типы полевых транзисторов, принцип действия, область применения
Полевые транзисторы представляют собой полупроводниковые приборы, в которых используется движение основных носителей заряда под воздействием продольного электрического поля через канал, электропроводностью которого можно управлять с помощью поперечного электрического поля. Область, из которой носители заряда выходят (истекают) в канал, называется истоком, а область, в которую они входят (стекают) – стоком. Напряжение, изменяющее электропроводность канала, прикладывается между управляющим электродом - затвором и истоком.
Структуры полевых транзисторов очень разнообразны. В большинстве из них канал представляет собой слаболегированный тонкий слой, расположенный либо непосредственно у поверхности полупроводникового кристалла, либо на некотором расстоянии от поверхности параллельно ей. Таким образом носители движутся вдоль поверхности. Исток и сток обычно сильнолегированные области.
Существуют три типа полевых транзисторов, различающихся физической структурой и способом управления проводимостью канала. В полевых транзисторах с изолированным затвором между металлическим затвором и каналом расположен слой диэлектрика так, что образуется структура металл – диэлектрик – полупроводник (МДП). По этой причине такие транзисторы называют также МДП-транзисторами. Поперечное электрическое поле, проникая через тонкий слой диэлектрика, управляет концентрацией носителей заряда в канале. В зависимости от способа изменения типа электропроводности на поверхности кристалла различают МДП-транзисторы с индуцированным и встроенным каналами. В транзисторах, изготовленных на основе кремния, в качестве диэлектрика обычно используется диоксид кремния SiO2, поэтому их обычно называют МОП-транзисторами.
В полевых транзисторах с управляющим переходом металл – полупроводник металлический электрод затвора образует с приповерхностным слоем канала выпрямляющий контакт, на который в рабочем режиме подается обратное напряжение. Оно изменяет толщину обедненного слоя контакта и тем самым управляет толщиной проводящей части канала, количеством носителей заряда в канале и током через него. В полевых транзисторах с управляющим p-n переходом в качестве затвора используется область противоположного типа проводимости по отношению к каналу, образующая с ним p-n переход, который в рабочем режиме имеет обратное включение. Напряжение на затворе изменяет толщину обедненного слоя управляющего p-n перехода и тем самым толщину проводящей части канала, число носителей заряда в нем и, следовательно, ток в канале.
Полевые транзисторы различают также по типу проводимости канала: с каналом p- или n-типа.
Характерным для всех полевых транзисторов является очень малый ток в цепи затвора, так как затвор либо изолирован, либо образует с каналом управляющий переход, включаемый в обратном направлении. Так как затвор в электрических схемах обычно является входным электродом, то полевой транзистор обладает высоким входным сопротивлением на постоянном токе (более 108 ÷ 1010 Ом). В этом заключается важнейшее отличие полевых транзисторов от биполярных: во входной цепи последних (обычно базовой) протекает значительный ток при прямом напряжении на переходе эмиттер-база. Поэтому входное сопротивление биполярных транзисторов весьма мало (десятки – сотни Ом в схемах с общей базой и общим эмиттером).
В связи с указанным различием входных сопротивлений иногда говорят, что полевой транзистор – это прибор, управляемый напряжением (электрическим полем), а биполярный – прибор, управляемый током. В приборах, управляемых напряжением, напряжение на входном электроде прибора из-за высокого входного сопротивления Rвх практически не зависит от параметров самого прибора и определяется ЭДС генератора входного сигнала, если Rвх >> Rген, где Rген – внутреннее сопротивление генератора. В приборах, управляемых током, входной ток из-за малого входного сопротивления прибора слабо зависит от параметров прибора и определяется током генератора входного сигнала (при Rвх << Rген).
В настоящее время наибольшее применение находят транзисторы с изолированным затвором, прежде всего благодаря внедрению микроэлектроники. МОП-транзисторы широко используются в кремниевых сверхбольших интегральных схемах (СБИС): микропроцессорах, микроЭВМ, запоминающих устройствах большой информационной емкости, устройствах медицинской электроники и др. Мощные МОП-транзисторы применяются в переключающих схемах.
Транзисторы с управляющим переходом металл – полупроводник на арсениде галлия используются для создания сверхскоростных цифровых интегральных микросхем и в СВЧ-устройствах. Транзисторы с управляющим p-n переходом на кремнии используются в основном как низкочастотные дискретные приборы.