
- •Н.И.Ковтун теория систем и системный анализ
- •Содержание
- •Предисловие
- •Порядок выполнения работы
- •Лабораторная работа № 1. Постановка задачи и основные понятия линейного программирования
- •1.1 Цель работы
- •1.2 Теоретическое введение
- •1.2.1 Понятие математической модели. Математическая модель в задачах линейного программирования (лп)
- •1.2.2 Методика выполнения работы
- •1.2.2.1 Примеры задач лп
- •1.2.2.2 Графический метод решения задач лп
- •1.2.2.3 Приведение задач лп к стандартной форме
- •1.3 Порядок выполнения работ
- •1.4 Контрольные вопросы
- •Лабораторная работа № 2 решение задач линейного программирования на основе симплекс-метода
- •2.1 Цель работы
- •2.2 Теоретическое введение
- •2.2.2 Методика выполнения работы
- •2.2.2.1 Пример задачи линейного программирования: задача планирования производства
- •2.2.2.2 Принцип работы симплекс-метода
- •2.2.2.3 Определение начального допустимого решения
- •2.2.2.4 Определение оптимального решения на основе симплекс-таблиц
- •2.2.2.5. Решение задач линейного программирования средствами табличного процессора Ехсеl
- •2.2.2.6 Анализ оптимального решения на чувствительность
- •2.3 Порядок выполнения работы
- •2.4 Контрольные вопросы
- •Лабораторная работа №3 решение задач линейного программирования на основе методов искусственного базиса
- •3.1 Цель работы
- •3.2 Теоретическое введение
- •3.2.1 Назначение и принцип работы методов искусственного базиса
- •3.2.2 Методика выполнения работы
- •3.2.2.1 Двухэтапный метод
- •3.2.2.2 Анализ оптимального решения на чувствительность
- •3.3 Порядок выполнения работы
- •3.4 Контрольные вопросы
- •Лабораторная работа № 4 решение задач оптимизации на основе методов линейного целочисленного программирования
- •4.1 Цель работы
- •4.2 Теоретическое введение
- •4.2.1 Назначение метода ветвей и границ
- •4.2.1.1 Метод ветвей и границ
- •4.2.2 Методика выполнения работы
- •4.3 Порядок выполнения работы
- •4.4 Контрольные вопросы
- •Лабораторная работа № 5 транспортная задача линейного программирования как частный случай общей распределительной задачи
- •5.1 Цель работы
- •5.2 Теоретическое введение
- •5.2.1 Общая характеристика распределительной задачи
- •5.2.2 Методика выполнения работы
- •5.2.2.1 Транспортная задача
- •5.2.2.2 Поиск допустимого решения методом минимального элемента
- •5.2.2.3 Поиск оптимального решения. Метод потенциалов
- •5.2.2.4 Транспортные задачи с неправильным балансом
- •5.2.2.4.1 Транспортная задача с избытком запасов
- •5.2.2.4.2 Транспортная задача с избытком заявок
- •5.2.2.5 Вырожденное решение
- •5.3 Порядок выполнения работы
- •5.4 Контрольные вопросы
- •Лабораторная работа № 6 решение задач оптимизации на основе методов нелинейного программирования
- •6.1 Цель работы
- •6.2 Теоретическое введение
- •6.2.1 Постановка задачи нелинейного программирования
- •6.2.2 Методика выполнения работы
- •6.2.2.1 Примеры задач нелинейного программирования
- •6.2.2.2 Решение задач нелинейного программирования. Градиентные методы. Метод Франка–Вульфа
- •6.2.2.3 Решение задач нелинейного программирования средствами табличного процессора excel
- •6.3 Порядок выполнения работы
- •6.4 Контрольные вопросы
- •Лабораторная работа № 7 решение задач оптимизации на основе метода динамического программирования
- •7.1 Цель работы
- •7.2 Теоретическое введение
- •7.2.1 Постановка задачи. Принцип работы метода динамического программирования
- •7.2.2 Методика выполнения работы
- •7.2.2.1 Примеры решения задач на основе метода динамического программирования
- •7.3 Порядок выполнения работы
- •7.4 Контрольные вопросы
- •Лабораторная работа № 8 принятие решений в условиях риска и неопределенности
- •8.1 Цель работы
- •8.2 Теоретическое введение
- •8.2.1 Понятие риска и неопределенности. Постановка задачи
- •8.2.2 Методика выполнения работы
- •8.2.2.1 Пример задачи принятия решения
- •8.2.2.2 Методы выбора решений в условиях риска и неопределенности
- •8.3 Порядок выполнения работы
- •8.4 Контрольные вопросы
- •Содержание отчета по лабораторной работе
- •Список литературы
- •Ковтун Нелли Игоревна теория систем и системный анализ
1.2.2.3 Приведение задач лп к стандартной форме
В общем случае задача линейного программирования записывается так, что ограничениями являются как уравнения, так и неравенства, а переменные могут быть как неотрицательными, так и произвольно изменяющимися.
Для большинства методов решения задач ЛП требуется предварительно привести задачу к стандартной (канонической, нормальной) форме. Задача (или ее математическая модель) представлена в стандартной форме, если она соответствует следующим условиям:
Целевая функция подлежит максимизации;
Все ограничения имеют вид равенств;
На все переменные накладываются ограничения неотрицательности.
Если целевая функция задачи подлежит минимизации, то для перехода к целевой функции, подлежащей максимизации, необходимо умножить исходную целевую функцию на (– 1). Доказано, что максимальное значение любой функции Е всегда равно минимальному значению функции (– Е), взятому с обратным знаком.
Для преобразования ограничения «больше или равно» в равенство (т.е. в ограничение «равно»), необходимо вычесть из левой части ограничения дополнительную переменную. Для преобразования ограничения «меньше или равно» в равенство необходимо прибавить к левой части ограничения дополнительную переменную. На все переменные, используемые для приведения задачи к стандартной форме, накладываются ограничения неотрицательности. Переменные, вычитаемые из ограничений «больше или равно» для их приведения к стандартной форме называются избыточными, а переменные, прибавляемые к ограничениям «меньше ли равно» - остаточными.
Если на какую-либо переменную накладывается ограничение неотрицательности, то она заменяется на разность двух переменных, каждая из которых должна быть неотрицательной. Таким образом, если некоторая переменная xj по своему физическому смыслу может принимать как положительные, так и отрицательные значения, то во всех ограничениях и в целевой функции ее следует заменить на разность двух переменных: x’j – x”j. На эти переменные накладываются ограничения неотрицательности: x’j 0, x”j 0.
Приведем к стандартной форме задачу из примера 1.1. Из ограничений «больше или равно» необходимо вычесть избыточные переменные, к ограничению «меньше или равно» - прибавить остаточную переменную. Целевая функция задачи подлежит максимизации, и на все переменные накладывается ограничение неотрицательности; поэтому никаких других преобразований не требуется. Математическая модель задачи в стандартной форме будет иметь следующий вид:
x1 – x3 =200
x2– x4 =100
0,5x1+1,2x2 +x5=600
x1 0; x2 0
Е=25x1+40x2→ max
Здесь переменные x3, x4 – избыточные, x5 – остаточная.
Примечание. Все переменные, которые вводятся в математическую модель для ее приведения к стандартной форме, имеют физический смысл. Так, в рассмотренном примере переменные x3 и x4 обозначают количество кислот, которое будет выпущено сверх государственного заказа. Переменная x5 обозначает, насколько количество опасных отходов, образующихся при производстве кислот, будет меньше максимально допустимой величины (600 т).
Приведем к стандартной форме задачу из примера 1.2. В ней имеются три ограничения «больше или равно». В каждое из них необходимо ввести избыточную переменную. Целевая функция задачи подлежит минимизации, ее необходимо умножить на (– 1), чтобы перейти к целевой функции, подлежащей максимизации. Математическая модель задачи в стандартной форме будет иметь следующий вид:
x1 – x3 =200
x2– x4 =100
25Х1+40x2 –x5=20000
x1 0; x2 0
–Е=–0,5x1–1,2x2 → max.