- •Н.И.Ковтун теория систем и системный анализ
- •Содержание
- •Предисловие
- •Порядок выполнения работы
- •Лабораторная работа № 1. Постановка задачи и основные понятия линейного программирования
- •1.1 Цель работы
- •1.2 Теоретическое введение
- •1.2.1 Понятие математической модели. Математическая модель в задачах линейного программирования (лп)
- •1.2.2 Методика выполнения работы
- •1.2.2.1 Примеры задач лп
- •1.2.2.2 Графический метод решения задач лп
- •1.2.2.3 Приведение задач лп к стандартной форме
- •1.3 Порядок выполнения работ
- •1.4 Контрольные вопросы
- •Лабораторная работа № 2 решение задач линейного программирования на основе симплекс-метода
- •2.1 Цель работы
- •2.2 Теоретическое введение
- •2.2.2 Методика выполнения работы
- •2.2.2.1 Пример задачи линейного программирования: задача планирования производства
- •2.2.2.2 Принцип работы симплекс-метода
- •2.2.2.3 Определение начального допустимого решения
- •2.2.2.4 Определение оптимального решения на основе симплекс-таблиц
- •2.2.2.5. Решение задач линейного программирования средствами табличного процессора Ехсеl
- •2.2.2.6 Анализ оптимального решения на чувствительность
- •2.3 Порядок выполнения работы
- •2.4 Контрольные вопросы
- •Лабораторная работа №3 решение задач линейного программирования на основе методов искусственного базиса
- •3.1 Цель работы
- •3.2 Теоретическое введение
- •3.2.1 Назначение и принцип работы методов искусственного базиса
- •3.2.2 Методика выполнения работы
- •3.2.2.1 Двухэтапный метод
- •3.2.2.2 Анализ оптимального решения на чувствительность
- •3.3 Порядок выполнения работы
- •3.4 Контрольные вопросы
- •Лабораторная работа № 4 решение задач оптимизации на основе методов линейного целочисленного программирования
- •4.1 Цель работы
- •4.2 Теоретическое введение
- •4.2.1 Назначение метода ветвей и границ
- •4.2.1.1 Метод ветвей и границ
- •4.2.2 Методика выполнения работы
- •4.3 Порядок выполнения работы
- •4.4 Контрольные вопросы
- •Лабораторная работа № 5 транспортная задача линейного программирования как частный случай общей распределительной задачи
- •5.1 Цель работы
- •5.2 Теоретическое введение
- •5.2.1 Общая характеристика распределительной задачи
- •5.2.2 Методика выполнения работы
- •5.2.2.1 Транспортная задача
- •5.2.2.2 Поиск допустимого решения методом минимального элемента
- •5.2.2.3 Поиск оптимального решения. Метод потенциалов
- •5.2.2.4 Транспортные задачи с неправильным балансом
- •5.2.2.4.1 Транспортная задача с избытком запасов
- •5.2.2.4.2 Транспортная задача с избытком заявок
- •5.2.2.5 Вырожденное решение
- •5.3 Порядок выполнения работы
- •5.4 Контрольные вопросы
- •Лабораторная работа № 6 решение задач оптимизации на основе методов нелинейного программирования
- •6.1 Цель работы
- •6.2 Теоретическое введение
- •6.2.1 Постановка задачи нелинейного программирования
- •6.2.2 Методика выполнения работы
- •6.2.2.1 Примеры задач нелинейного программирования
- •6.2.2.2 Решение задач нелинейного программирования. Градиентные методы. Метод Франка–Вульфа
- •6.2.2.3 Решение задач нелинейного программирования средствами табличного процессора excel
- •6.3 Порядок выполнения работы
- •6.4 Контрольные вопросы
- •Лабораторная работа № 7 решение задач оптимизации на основе метода динамического программирования
- •7.1 Цель работы
- •7.2 Теоретическое введение
- •7.2.1 Постановка задачи. Принцип работы метода динамического программирования
- •7.2.2 Методика выполнения работы
- •7.2.2.1 Примеры решения задач на основе метода динамического программирования
- •7.3 Порядок выполнения работы
- •7.4 Контрольные вопросы
- •Лабораторная работа № 8 принятие решений в условиях риска и неопределенности
- •8.1 Цель работы
- •8.2 Теоретическое введение
- •8.2.1 Понятие риска и неопределенности. Постановка задачи
- •8.2.2 Методика выполнения работы
- •8.2.2.1 Пример задачи принятия решения
- •8.2.2.2 Методы выбора решений в условиях риска и неопределенности
- •8.3 Порядок выполнения работы
- •8.4 Контрольные вопросы
- •Содержание отчета по лабораторной работе
- •Список литературы
- •Ковтун Нелли Игоревна теория систем и системный анализ
7.3 Порядок выполнения работы
1. Изучить теоретическую часть.
2. Решить задачу оптимизации на основе метода динамического программирования.
7.4 Контрольные вопросы
Для решения каких задач предназначен метод динамического программирования?
В чем заключена суть метода динамического программирования?
Каким условиям должна удовлетворять задача, чтобы для ее решения мог быть применен алгоритм динамического программирования?
Какие трудности связаны с вычислительными алгоритмами динамического программирования?
Что определяет направление решения задачи в алгоритмах динамического программирования?
Лабораторная работа № 8 принятие решений в условиях риска и неопределенности
8.1 Цель работы
1. Рассмотреть понятие принятия решения.
2. Рассмотреть понятия риска и неопределенности.
3. Рассмотреть постановку задачи и методы выбора решений в условиях риска и неопределенности.
4. Рассмотреть примеры решения задач по принятию решений в условиях риска и неопределенности.
8.2 Теоретическое введение
8.2.1 Понятие риска и неопределенности. Постановка задачи
Во многих случаях результат принятия решения зависит не только от самого решения, но и от некоторых внешних условий. Под внешними условиями понимаются любые факторы, на которые невозможно влиять (или возможность такого влияния ограничена): спрос на продукцию, действия конкурентов, природно-климатические факторы и т.д. Так как заранее точно неизвестны условия реализации решения, не могут быть заранее известны и его результаты: прибыль, затраты, сроки реализации решения и т.д.
Под неопределенностью понимается неполнота информации о внешних условиях, влияющих на результат принимаемого решения. Под риском понимается возможность каких-либо неблагоприятных последствий принятого решения: потери ресурсов, недополучения прибыли, возникновения дополнительных расходов, несвоевременного выполнения работ и т.д.
Задачи, связанные с принятием решений в условиях риска, возникают, например, при планировании производства. Результат принятого решения (например, прибыль от выпуска продукции) зависит не только от действий предприятия (т.е. от вида выпускаемой продукции, объема производства, качества продукции и т.д.), но и от внешних факторов (например, от спроса на продукцию, от наличия на рынке аналогичных видов продукции и т.д.). Очевидно, что внешние условия не могут быть точно известны заранее, и предприятие не может существенно влиять на них.
Имеется большое количество разнообразных формулировок задач, решаемых в условиях риска и неопределенности, и методов их решения.
Многие задачи, решаемые в условиях риска и неопределенности, могут быть сформулированы следующим образом. Требуется выбрать одно из М возможных решений (альтернатив): А1, А2, …, АМ. Известно, что каждое из решений может быть реализовано в одном из N вариантов внешних условий: В1, В2, …, В. Для каждого из решений известны его последствия (выигрыши стороны принимающей решение) в каждом из вариантов внешних условий: Еij, i= 1, …, M, j=1, …, N. Эти выигрыши можно свести в таблицу, называемую матрицей выигрышей (или платежной матрицей). Такая матрица представляет собой математическую модель задачи. Общий вид матрицы выигрышей показан в табл. 8.1.
Метод построения матрицы выигрышей полностью зависит от конкретных условий задачи.
Требуется выбрать наиболее эффективный вариант решения, т.е. одно из решений А1, А2, …, АМ.
Таблица 8.1
|
В1 |
В2 |
… |
ВN |
А1 |
Е11 |
Е12 |
… |
Е1N |
А2 |
Е21 |
Е22 |
… |
Е2N |
… |
… |
… |
… |
… |
АМ |
ЕМ1 |
ЕМ2 |
… |
ЕМN |
Примечания:
1. В матрице выигрышей могут быть отрицательные элементы, соответствующие убыткам.
2. В некоторых случаях вместо матрицы выигрышей используется матрица затрат. В этом случае элемент Еij – это затраты, связанные с i–м решением в j–м варианте внешних условий.
