- •Н.И.Ковтун теория систем и системный анализ
- •Содержание
- •Предисловие
- •Порядок выполнения работы
- •Лабораторная работа № 1. Постановка задачи и основные понятия линейного программирования
- •1.1 Цель работы
- •1.2 Теоретическое введение
- •1.2.1 Понятие математической модели. Математическая модель в задачах линейного программирования (лп)
- •1.2.2 Методика выполнения работы
- •1.2.2.1 Примеры задач лп
- •1.2.2.2 Графический метод решения задач лп
- •1.2.2.3 Приведение задач лп к стандартной форме
- •1.3 Порядок выполнения работ
- •1.4 Контрольные вопросы
- •Лабораторная работа № 2 решение задач линейного программирования на основе симплекс-метода
- •2.1 Цель работы
- •2.2 Теоретическое введение
- •2.2.2 Методика выполнения работы
- •2.2.2.1 Пример задачи линейного программирования: задача планирования производства
- •2.2.2.2 Принцип работы симплекс-метода
- •2.2.2.3 Определение начального допустимого решения
- •2.2.2.4 Определение оптимального решения на основе симплекс-таблиц
- •2.2.2.5. Решение задач линейного программирования средствами табличного процессора Ехсеl
- •2.2.2.6 Анализ оптимального решения на чувствительность
- •2.3 Порядок выполнения работы
- •2.4 Контрольные вопросы
- •Лабораторная работа №3 решение задач линейного программирования на основе методов искусственного базиса
- •3.1 Цель работы
- •3.2 Теоретическое введение
- •3.2.1 Назначение и принцип работы методов искусственного базиса
- •3.2.2 Методика выполнения работы
- •3.2.2.1 Двухэтапный метод
- •3.2.2.2 Анализ оптимального решения на чувствительность
- •3.3 Порядок выполнения работы
- •3.4 Контрольные вопросы
- •Лабораторная работа № 4 решение задач оптимизации на основе методов линейного целочисленного программирования
- •4.1 Цель работы
- •4.2 Теоретическое введение
- •4.2.1 Назначение метода ветвей и границ
- •4.2.1.1 Метод ветвей и границ
- •4.2.2 Методика выполнения работы
- •4.3 Порядок выполнения работы
- •4.4 Контрольные вопросы
- •Лабораторная работа № 5 транспортная задача линейного программирования как частный случай общей распределительной задачи
- •5.1 Цель работы
- •5.2 Теоретическое введение
- •5.2.1 Общая характеристика распределительной задачи
- •5.2.2 Методика выполнения работы
- •5.2.2.1 Транспортная задача
- •5.2.2.2 Поиск допустимого решения методом минимального элемента
- •5.2.2.3 Поиск оптимального решения. Метод потенциалов
- •5.2.2.4 Транспортные задачи с неправильным балансом
- •5.2.2.4.1 Транспортная задача с избытком запасов
- •5.2.2.4.2 Транспортная задача с избытком заявок
- •5.2.2.5 Вырожденное решение
- •5.3 Порядок выполнения работы
- •5.4 Контрольные вопросы
- •Лабораторная работа № 6 решение задач оптимизации на основе методов нелинейного программирования
- •6.1 Цель работы
- •6.2 Теоретическое введение
- •6.2.1 Постановка задачи нелинейного программирования
- •6.2.2 Методика выполнения работы
- •6.2.2.1 Примеры задач нелинейного программирования
- •6.2.2.2 Решение задач нелинейного программирования. Градиентные методы. Метод Франка–Вульфа
- •6.2.2.3 Решение задач нелинейного программирования средствами табличного процессора excel
- •6.3 Порядок выполнения работы
- •6.4 Контрольные вопросы
- •Лабораторная работа № 7 решение задач оптимизации на основе метода динамического программирования
- •7.1 Цель работы
- •7.2 Теоретическое введение
- •7.2.1 Постановка задачи. Принцип работы метода динамического программирования
- •7.2.2 Методика выполнения работы
- •7.2.2.1 Примеры решения задач на основе метода динамического программирования
- •7.3 Порядок выполнения работы
- •7.4 Контрольные вопросы
- •Лабораторная работа № 8 принятие решений в условиях риска и неопределенности
- •8.1 Цель работы
- •8.2 Теоретическое введение
- •8.2.1 Понятие риска и неопределенности. Постановка задачи
- •8.2.2 Методика выполнения работы
- •8.2.2.1 Пример задачи принятия решения
- •8.2.2.2 Методы выбора решений в условиях риска и неопределенности
- •8.3 Порядок выполнения работы
- •8.4 Контрольные вопросы
- •Содержание отчета по лабораторной работе
- •Список литературы
- •Ковтун Нелли Игоревна теория систем и системный анализ
5.2.2.4 Транспортные задачи с неправильным балансом
В предыдущих случаях мы рассматривали только такую задачу о перевозках, в которой сумма запасов ровна сумме заявок:
, ( где i=1,...,m ; j=1,...,n ) (5.4.1)
Это классическая транспортная задача, иначе называемая, транспортной задачей с правильным балансом. Встречаются такие варианты транспортной задачи, где условие (5.4.1) нарушено. В этих случаях говорят о транспортной задаче с неправильным балансом.
Транспортные задачи с неправильным балансом – это задачи, в которых сумма запасов товара, имеющихся у поставщиков, не равна сумме величин спроса потребителей.
Все методы решения транспортных задач предназначены для задач с правильным балансом. Поэтому для решения задачи с неправильным балансом ее необходимо привести к правильному балансу, т.е. преобразовать в обычную транспортную задачу с правильным балансом. Способы такого преобразования зависят от постановки задачи. Полученная задача с правильным балансом решается обычными методами, как показано выше.
Баланс транспортной задачи может нарушаться в 2-х направлениях:
1. Сумма запасов в пунктах отправления превышает сумму поданных заявок
,
( где i=1,...,m
; j=1,...,n
)
2. Сумма поданных заявок превышает наличные запасы
,
( где i=1,...,m
; j=1,...,n
)
Условимся первый случай называть “Транспортной задачей с избытком запасов“, а второй — “Транспортной задачей с избытком заявок”.
Рассмотрим последовательно эти два случая:
5.2.2.4.1 Транспортная задача с избытком запасов
В пунктах СК1, СК2, …СКм имеются запасы груза A1, A2, ... , Am; пункты МГ1, МГ2, …, МГN подали заявки B1, B2, ... , Bn, причем
, ( где i=1,...,m ; j=1,...,n )
Требуется найти такой план перевозок (X), при котором все заявки будут выполнены, а общая стоимость перевозок минимальна.
Очевидно, при этой постановке задачи некоторые условия-равенства транспортной задачи превращаются в условия-неравенства, а некоторые — остаются равенствами.
n
∑Xi,j ≤ Аi (i=1, ... , m);
j=1
M
∑ Xi,j = Вj (j=1, ... , n).
i=1
Мы умеем решать задачу линейного программирования, в какой бы форме — равенств или неравенств не были бы заданы ее условия. Поставленная задача может быть решена, например, обычным симплекс-методом. Однако задачу можно решить проще, если искусственным приемом свести ее к ранее рассмотренной транспортной задаче с правильным балансом. Для этого, сверх имеющихся n пунктов назначения МГ1, МГ2, …, МГN, введём ещё один, фиктивный, пункт назначения МГN+1, которому припишем фиктивную заявку, равную избытку запасов над заявками:
( где i=1,...,m
; j=1,...,n
) ,
а стоимость перевозок из всех пунктов отправления в фиктивный пункт назначения МГN+1 будем считать равным нулю. Введением фиктивного пункта назначения МГ N+1 с его заявкой МГ N+1 мы сравняли баланс транспортной задачи и теперь его можно решать как обычную транспортную задачу с правильным балансом.
Если требуется обеспечить вывоз всего товара у какого-либо поставщика, то стоимость перевозки товара от этого поставщика фиктивному потребителю принимается равной очень большому числу.
Если требуется
распределить излишек товара по всем
поставщикам, то запасы товара у всех
поставщиков искусственно уменьшаются.
Для этого необходимо умножить все
величины запасов на коэффициент
.
Вводить фиктивного потребителя в этом
случае не требуется.
