- •Н.И.Ковтун теория систем и системный анализ
- •Содержание
- •Предисловие
- •Порядок выполнения работы
- •Лабораторная работа № 1. Постановка задачи и основные понятия линейного программирования
- •1.1 Цель работы
- •1.2 Теоретическое введение
- •1.2.1 Понятие математической модели. Математическая модель в задачах линейного программирования (лп)
- •1.2.2 Методика выполнения работы
- •1.2.2.1 Примеры задач лп
- •1.2.2.2 Графический метод решения задач лп
- •1.2.2.3 Приведение задач лп к стандартной форме
- •1.3 Порядок выполнения работ
- •1.4 Контрольные вопросы
- •Лабораторная работа № 2 решение задач линейного программирования на основе симплекс-метода
- •2.1 Цель работы
- •2.2 Теоретическое введение
- •2.2.2 Методика выполнения работы
- •2.2.2.1 Пример задачи линейного программирования: задача планирования производства
- •2.2.2.2 Принцип работы симплекс-метода
- •2.2.2.3 Определение начального допустимого решения
- •2.2.2.4 Определение оптимального решения на основе симплекс-таблиц
- •2.2.2.5. Решение задач линейного программирования средствами табличного процессора Ехсеl
- •2.2.2.6 Анализ оптимального решения на чувствительность
- •2.3 Порядок выполнения работы
- •2.4 Контрольные вопросы
- •Лабораторная работа №3 решение задач линейного программирования на основе методов искусственного базиса
- •3.1 Цель работы
- •3.2 Теоретическое введение
- •3.2.1 Назначение и принцип работы методов искусственного базиса
- •3.2.2 Методика выполнения работы
- •3.2.2.1 Двухэтапный метод
- •3.2.2.2 Анализ оптимального решения на чувствительность
- •3.3 Порядок выполнения работы
- •3.4 Контрольные вопросы
- •Лабораторная работа № 4 решение задач оптимизации на основе методов линейного целочисленного программирования
- •4.1 Цель работы
- •4.2 Теоретическое введение
- •4.2.1 Назначение метода ветвей и границ
- •4.2.1.1 Метод ветвей и границ
- •4.2.2 Методика выполнения работы
- •4.3 Порядок выполнения работы
- •4.4 Контрольные вопросы
- •Лабораторная работа № 5 транспортная задача линейного программирования как частный случай общей распределительной задачи
- •5.1 Цель работы
- •5.2 Теоретическое введение
- •5.2.1 Общая характеристика распределительной задачи
- •5.2.2 Методика выполнения работы
- •5.2.2.1 Транспортная задача
- •5.2.2.2 Поиск допустимого решения методом минимального элемента
- •5.2.2.3 Поиск оптимального решения. Метод потенциалов
- •5.2.2.4 Транспортные задачи с неправильным балансом
- •5.2.2.4.1 Транспортная задача с избытком запасов
- •5.2.2.4.2 Транспортная задача с избытком заявок
- •5.2.2.5 Вырожденное решение
- •5.3 Порядок выполнения работы
- •5.4 Контрольные вопросы
- •Лабораторная работа № 6 решение задач оптимизации на основе методов нелинейного программирования
- •6.1 Цель работы
- •6.2 Теоретическое введение
- •6.2.1 Постановка задачи нелинейного программирования
- •6.2.2 Методика выполнения работы
- •6.2.2.1 Примеры задач нелинейного программирования
- •6.2.2.2 Решение задач нелинейного программирования. Градиентные методы. Метод Франка–Вульфа
- •6.2.2.3 Решение задач нелинейного программирования средствами табличного процессора excel
- •6.3 Порядок выполнения работы
- •6.4 Контрольные вопросы
- •Лабораторная работа № 7 решение задач оптимизации на основе метода динамического программирования
- •7.1 Цель работы
- •7.2 Теоретическое введение
- •7.2.1 Постановка задачи. Принцип работы метода динамического программирования
- •7.2.2 Методика выполнения работы
- •7.2.2.1 Примеры решения задач на основе метода динамического программирования
- •7.3 Порядок выполнения работы
- •7.4 Контрольные вопросы
- •Лабораторная работа № 8 принятие решений в условиях риска и неопределенности
- •8.1 Цель работы
- •8.2 Теоретическое введение
- •8.2.1 Понятие риска и неопределенности. Постановка задачи
- •8.2.2 Методика выполнения работы
- •8.2.2.1 Пример задачи принятия решения
- •8.2.2.2 Методы выбора решений в условиях риска и неопределенности
- •8.3 Порядок выполнения работы
- •8.4 Контрольные вопросы
- •Содержание отчета по лабораторной работе
- •Список литературы
- •Ковтун Нелли Игоревна теория систем и системный анализ
2.3 Порядок выполнения работы
Изучить теоретическую часть.
Решить задачу линейного программирования симплекс-методом и средствами табличного процессора Ехсеl.
Провести анализ полученного решения на чувствительность.
2.4 Контрольные вопросы
1. Расскажите принцип работы симплекс-метода.
2. Перечислите основные этапы реализации симплекс-метода.
3. Что называется базисом?
4. Расскажите правила определения переменных для включения в базис и исключения из базиса.
5. Перечислите правила преобразования симплекс-таблицы.
6. Какой элемент симплекс-таблицы называется ведущим?
7. Что называется анализом оптимального решения на чувствительность?
8. Перечислите виды анализа решения на чувствительность и их основные положения.
Лабораторная работа №3 решение задач линейного программирования на основе методов искусственного базиса
3.1 Цель работы
1. Рассмотреть назначение и принцип работы методов искусственного базиса.
2. Изучить двухэтапный метод.
3. Научиться проводить анализ оптимального решения на чувствительность.
3.2 Теоретическое введение
3.2.1 Назначение и принцип работы методов искусственного базиса
Методы искусственного базиса предназначены для решения задач линейного программирования, содержащих ограничения различных видов: «больше ли равно», «меньше или равно», «равно».
При решении задачи линейного программирования для построения начального базиса необходимо, чтобы в каждом ограничении присутствовала базисная переменная, т.е. переменная, входящая в данное ограничение с коэффициентом, равным единице, и не входящая ни в одно из других ограничений. В ограничениях «меньше или равно» в качестве таких переменных используются остаточные переменные, добавляемые в ограничение при его приведении к стандартной форме (см. подраздел 2.2.2.3). Для приведения к стандартной форме ограничений «больше или равно» вводятся избыточные переменные со знаком «минус». В ограничения «равно» не требуется вводить никаких дополнительных переменных, т.к. такие ограничения уже соответствуют стандартной форме. Поэтому в задачах, содержащих ограничение «больше или рано» или «равно», после приведения к стандартной форме обычно невозможно построить начальный базис, т.к. базисные переменные имеются не во всех ограничениях.
Для задач, содержащих ограничения «не меньше» или «равно», обычно нельзя использовать в качестве начального допустимого решения (начальной угловой точки ОДР) начало координат, т.е. решение, в котором все исходные переменные математической модели равны нулю: x1= x2=…= xn=0. Такое решение, как правило, оказывается недопустимым (не соответствует ограничениям).
Методы искусственного базиса применяются во всех случаях, когда базисные переменные имеются не во всех ограничениях задачи, приведенной к стандартной форме. Принцип работы всех методов искусственного базиса следующий. Во все ограничения, не содержащих базисных переменных, вводятся искусственные переменные (по одной в каждое ограничение), используемые для построения начального базиса. После этого выполняется поиск оптимального решения на основе обычных процедур симплекс-метода.
В окончательном (оптимальном) решении задачи все искусственные переменные должны быть равны нулю. Если в оптимальном решении какая-либо из искусственных переменных оказывается ненулевой, это означает, что задача не имеет допустимых решений. Причиной может быть ошибка в математической модели или противоречия в постановке задачи (например, количество изделий, которое требуется выпустить, не может быть выпущено из-за ограничений на ресурсы).
На искусственные переменные, как и на все остальные переменные в задаче, накладывается требование неотрицательности.
Искусственные переменные не имеют никакого физического смысла: их нельзя интерпретировать как количество изделий, запаса ресурсов и т.д. Они требуются только для построения начального базиса.
Основные методы искусственного базиса – двухэтапный метод, рассматриваемый ниже, и метод больших штрафов. Поиск решения на основе этих методов выполняется с использованием симплекс-таблиц.
