Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Подготовка к экзамену.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.11 Mб
Скачать

6. Разработка нефтяных месторождений системой горизонтальных скважин. Выбор профиля горизонтальной скважины. Обоснование длины горизонтального ствола скважины.

В СССР впервые применение многоствольных скважин было предложено еще в 1941 году Н.С. Тимофеевым. В 1953 г. под руководством А.М.Григоряна и В.А. Брагина на Краснокамском месторождении из основного вертикального ствола длиной 240 м пробурили в продуктивном пласте два дополнительных ствола по 30 и 35 м.

Первая ГС (горизонтальная скважина) в Удмуртии пробурена в 1992 году на Мишкинском месторождении. Дебит скважины получен в 4 раза выше соседних вертикальных скважин. Плановое опытно-промышленное бурение ГС начато в 1994 году. Внедрение горизонтального бурения на месторождениях Удмуртии показало, что оно может успешно применяться как на начальной стадии разработки, так и на поздней, с целью повышения эффективности реализуемых систем разработки. Горизонтальные скважины и боковые горизонтальные стволы применяются в сочетании с вертикальными, по которым имеется информация о параметрах пластов (прежде всего, о нефтенасыщенных толщинах и их изменении по площади, продуктивности скважин и др.), позволяющей наиболее обоснованно размещать горизонтальные стволы.

Существует четыре группы основных критериев выбора объектов под горизонтальное бурение: геологические, технологические, технические и экономические.

Анализ влияния особенностей геологического строения объектов разработки Удмуртии на эффективность горизонтальных стволов позволяет выделить следующие основные геологические критерии при выборе скважин для горизонтального бурения:

  • эффективная нефтенасыщенная толщина не менее 2.5-3 м;

  • наличие непроницаемого экрана (уплотненной пачки пород) между водонасыщенными и нефтенасыщенными коллекторами;

  • возможность формирования горизонтального ствола в верхней части нефтенасыщенного пласта на максимальном удалении от ВНК, особенно при наличии развитой трещиноватости пород;

  • проводка горизонтального ствола по горизонтальной, либо по нисходящей линии и недопущение седловидных перегибов его в вертикальной плоскости в целях предотвращения вероятности образования гидрозатвора;

  • эффективная (приходящаяся на нефтенасыщенные интервалы) длина бокового горизонтального ствола составляет 80-200 м, в зависимости от реализованной сетки скважин.

Технологические критерии определяются многими факторами:

  • расположением невыработанных и слабо дренируемых зон пласта по площади и разрезу с учетом реализованной системы разработки;

  • степенью выработанности запасов; текущими пластовыми и забойными давлениями; дебитами скважин на перспективных участках залежи;

  • бводненностью продукции; плотностью сетки скважин;

  • текущим состоянием разработки объекта в целом.

Технические критерии включают:

  • состояние эксплуатационной колонны;

  • состояние цементного камня за колонной;

  • наличие зон осложнений в интервале зарезки и бурения БГС (бокового горизонтального ствола).

Экономическими критериями являются:

  • минимизация затрат на бурение БГС, как временных, так и финансовых;

  • окупаемость вложенных средств;

  • рентабельность бурения БГС.

Первоочередными объектами для бурения БГС следует рассматривать простаивающие скважины: бездействующие, пьезометрические, законсервированные и т.д. Объектами для бурения БГС также могут быть скважины, находящиеся в эксплуатации на нефть с предельно низким, нерентабельным дебитом, в которых существующие методы увеличения продуктивности исчерпаны и не дают положительного результата.

При площадных системах размещения скважин в процессе разработки нефтяных месторождений целики нефти остаются в слабо дренируемых участках залежи, расположенных между добывающими скважинами, в зонах распространения коллекторов с ухудшенными геолого-физичекими характеристиками, которые "обходятся" нагнетаемой водой, а при слабой активности внедрения в залежь пластовых вод на участках, не охваченных процессом заводнения.

Определение местоположения целиков нефти, не участвующих в процессе дренирования, производится по картам разработки, картам изобар, с учетом продуктивности окружающих скважин. Размеры целиков нефти обусловлены характером размещения добывающих скважин на залежи и геологической неоднородностью коллектора, которая влияет на их продуктивность.

Прогнозирование технологической эффективности горизонтального бурения является важнейшей задачей. Специалистами института УдмуртНИПИнефть предложена следующая методика оценки технологических показателей работы ГС.

Дебит горизонтальной скважины при двухфазной (вода-нефть) фильтрации выражается формулой Джоши: , (1)

здесь fв(s), fн(s) - относительные фазовые проницаемости для воды и нефти; s - водонасыщенность; в, н - вязкости воды и нефти, К - проницаемость пласта в горизонтальном направлении, мкм2; L - длина горизонтального ствола, м, - большая полуось эллипса (контура питания).

Существуют оценки площади дренирования для горизонтальных скважин по сравнению с вертикальными. Так, если площадь области питания для вертикальной скважины составляет , то для горизонтальной скважины длиной L - . Эквивалентный этой площади радиус круга равен . Данный радиус используется при расчете величины a в предложенной формуле.

Для расчетов динамики дебита используется метод последовательной смены стационарных состояний. Вводится достаточно малый шаг по времени t, в течение которого давление и насыщенности в пласте предполагаются постоянными. Дебит скважины на отрезке времени t определяется по приведенной выше формуле. Для очередного отрезка времени, учитывая упругие свойства пласта, из балансовых уравнений определяются новые значения пластового давления и водонасыщенности, которые предполагаются постоянными на очередном отрезке времени. Измененный дебит скважины определяется по формуле с новыми значениями pк и s. И так от шага к шагу.

Известно, что в силу неопределенности параметров пластовой системы и несовершенства скважины расчетные дебиты по теоретическим формулам могут значительно отличаться от фактических. Выполним согласование теоретических дебитов с фактическими для вертикальных скважин.

Дебит вертикальной скважины в начальный период разработки определяем по формуле Дюпюи для двухфазной фильтрации: . Из истории разработки известны начальные фактические дебиты вертикальных скважин .Для согласования расчетных дебитов с фактическими правую часть формулы необходимо умножить на поправочный коэффициент . Поправочный коэффициент  в комплексе учитывает несоответствие параметров пластовой системы и скважины, использованных в формуле (1), реальным их значениям. Найденный поправочный коэффициент используется для уточнения расчетных дебитов БГС. Таким образом, умножая правую часть формулы (1) на этот поправочный коэффициент, получим конечную формулу дебита жидкости горизонтальной скважины . Дебит скважины по воде определяется по формуле , ( F(s) – функция Баклея-Леверетта, характеризующая долю воды в общем потоке жидкости). Дебит по нефти в этом случае определяется как разность дебитов по жидкости и по воде.

Эффективность горизонтального бурения определяется не только геолого-физическими критериями, техническими параметрами, выбранными целиками нефти, но и профилем горизонтального ствола.

Профиль горизонтального ствола контролируется, прежде всего, геолого-физическими факторами. В массивных залежах с карбонатными коллекторами и активными подошвенными водами профиль ствола определяется активностью водонапорной системы. Во избежание преждевременного обводнения горизонтального ствола подошвенной водой, в условиях ее высокой активности, горизонтальный ствол целесообразно формировать в кровельной части продуктивного пласта по горизонтали, либо по нисходящей линии. Как в первом, так и во втором случае более низкий участок ствола должен быть на оптимальном расстоянии от ВНК. Для массивных залежей турнейского возраста с активными подошвенными водами это расстояние должно быть не менее 8 - 10 м, башкирского – 6 – 8 м. Это расстояние подтверждено опытом бурения горизонтальных стволов.

В условиях пластового характера залежи с отсутствием подошвенных вод профиль горизонтального ствола рекомендуется формировать по нисходящей линии с полным охватом пласта по толщине.

В условиях узких нефтяных оторочек и в подгазовых залежах профиль рекомендуется по восходящей линии в сторону газовой залежи, что делает возможным изолировать прорыв газа за счет отсечения конечной части ствола

В условиях многопластовых объектов и отсутствия подошвенных вод, теоретически, наиболее приемлемым профилем является синусоидальный. Однако, как показала практика бурения на Кезском месторождениии, где многопластовый верейско-башкирский объект вскрывался синусоидальным горизонтальным стволом, такой ствол не является оптимальным по двум причинам:

  • с точки зрения его эксплуатации возникает опасность образования застойных зон (гидрозатворов) в пониженных участках ствола;

  • в экономическом отношении такой ствол очень «дорогой», при сравнительно большой его длине полезная нефтенасыщенная длина незначительна и составляет порядка 30% от общей длины.

Оптимальная длина ГС определяется реализованной сеткой скважин, текущим состоянием разработки, размерами прогнозируемых целиков нефти (для БГС) и техническими возможностями бурения. При чрезмерно большой длине горизонтального ствола увеличивается риск вскрытия им уже частично дренированной зоны вблизи соседних добывающих скважин. Практические данные работы БГС на месторождениях Удмуртии указывают, что дебит горизонтального ствола в условиях неоднородных коллекторов, при сетке скважин 500500 м и отходах от старого ствола на 150 м при увеличении его длины более 150 м не растет.

Горизонтальная технология бурения скважин позволяет не только увеличить темпы нефтедобычи, но и повысить экономические показатели разработки месторождений и увеличить нефтеотдачу. Так, по турнейскому объекту Лудошурского месторождения, находящемуся в заключительной стадии разработки, за счет БГС текущая нефтеотдача увеличена на 4,5%, а увеличение конечной нефтеотдачи ожидается на 13%, а годовой темп нефтедобычи возрос более чем в два раза.

Опыт бурения ГС и БГС на месторождениях Удмуртии показал, что:

  • наиболее перспективными для горизонтального бурения являются турнейские залежи с карбонатными коллекторами и нефтями выской и повышенной вязкости (Мишкинское, Лудошурское);

  • на втором месте по эффективности пластовые залежи верейского возраста и яснополянского надгоризонта (Котовское, Ижевское, Ельниковское и др.);

  • башкирские высокорасчлененные объекты с карбонатными сложнопостроенными коллекторами мало перспективны как для горизонтального бурения, так и для бурения БГС (Чутырско-Киенгопское, Гремихинское). Перспективы повышения разработки этих объектов нами связываются с изысканием новых надежных методов обнаружения обводненных пластов закачиваемой водой и их изоляцией, а так же с более широким внедрением циклического заводнения;

  • эффективность бурения во времени существенно снижается, так как наиболее перспективные объекты уже разбурены.

7. Тепловые методы разработки нефтяных месторождений. Разработка нефтяных месторождений с нагнетанием теплоносителя в пласт. Теоретические основы процесса. Выбор типа теплоносителя. Проектирование процесса. Повышение эффективности воздействия на залежь теплоносителем.

Для повышения эффективности эксплуатации месторожде­ний, содержащих тяжелые, парафинистые и смолистые нефти применяют тепловые методы: закачку нагретой нефти, нефтепродуктов (конденсата, керосина, дизельного топлива) или во­ды, обработанной ПАВ; закачку пара посредством передвиж­ных парогенераторов; электротепловую обработку с помощью специальных самоходных установок.

Термические методы находят широкое применение при разработке месторождений с трудноизвлекаемыми запасами нефти. К ним относятся сложнопостроенные месторождения Удмуртии с нефтями повышенной и высокой вязкости, содержащими в своем составе большое количество парафина и асфальтосмолистых веществ. Нефти малоподвижны, при разработке их на естественном режиме или методами обычного заводнения в пласте и прискважинных зонах происходит отложение парафина и асфальтосмолистых веществ, нередко с полной потерей проницаемости. Поэтому дебиты скважин месторождений с высоковязкими нефтями крайне низкие, а коэффициенты нефтеотдачи пластов при традиционных технологиях разработки методом заводнения находятся на уровне 0,1 - 0,2.

Геолого-физические критерии для эффективного использования

методов нагнетания теплоносителя в пласт (ПТВ и ВГВ)

Геолого-физические параметры

Пределы количественных значений параметров

Вязкость пластовой нефти, мПа· с

≥50

Глубина залегания пласта, м

1000

Эффективная нефтенасыщенная толщина, м

≥6м

Абсолютная проницаемость пласта, (мкм)2

≥0,1

Нефтенасыщенность, %

≥40

Пористость коллектора, доли ед.

≥0,12

Если вязкость нефти резко снижается с увеличением температуры (тяжелые нефти) и коллектор гранулярный, то основной вклад в увеличение нефтеотдачи вносит механизм улучшения отношения вязкостей нефти и воды (µн / µв ). Если же вязкость нефти с изменением температуры меняется умеренно или слабо, то преимущество получают механизмы теплового расширения пластовой системы и улучшения проявления молекулярно-поверхностных сил.

К основным видам термического воздействия на пласт относятся следующие:

  1. закачка горячей воды в продуктивные пласты (воздействие горячей водой – ВГВ);

  2. паротепловое воздействие на пласт (ПТВ);

  3. вытеснение нефти созданием внутрипластового движущегося очага горения (ВДОГ).

Первые два вида объединяются под общим названием воздействия на пласт теплоносителями. Следовательно, если говорим, что месторождение разрабатывается с применением теплоносителей, то имеется в виду либо ВГВ, либо ПТВ. В этих технологиях горячая вода или пар создаются на поверхности и вводятся в пласт через нагнетательные скважины.

Нефть или воду нагревают на устье скважины с помощью паропередвижных установок или электронагревателей. Прак­тически установлено, что для эффективного прогрева призабойной зоны пласта требуется 15 - 30 м3 горячих нефтепродук­тов или сырой нефти, нагретых до 90 - 95 °С.

Прогрев осуществляют созданием циркуляции (горячей про­мывкой) или продавливанием жидкости в пласт.

При горячей промывке нагретые нефть или нефтепродукты закачивают через затрубное пространство, не останавливая работу скважины по подъемным (насосно-компрессорным) тру­бам. Горячий теплоноситель вытесняет «холодную» жидкость из затрубного пространства до башмака подъемных труб или приема насоса, частично растворяя парафин, отложившийся на стенках эксплуатационной колонны. При такой обработке теп­ловое воздействие на призабойную зону пласта весьма незна­чительно.

Продавливание горячей жидкости в призабойную зону пласта эффективнее, но требует извлечения скважинного под­земного оборудования и спуска насосно-компрессорных труб с пакером. Иногда призабойную зону пласта обрабатывают го­рячей нефтью с поверхностно-активными веществами (10 - 12 м3 горячей нефти и 80 -100 кг ПАВ). По истечении 6 - 7 ч после обработки скважину пускают в работу.

При использовании пластовой воды ее нагревают до 90 - 95 °С и добавляют ПАВ (0,5 - 1% объема воды). Приготовлен­ную таким способом воду в количестве 70 - 80 м3 под давле­нием закачивают в скважину.

Одним из наиболее эффективных методов теплового воздей­ствия на призабойную зону пласта является прогрев ее паром. Значения КИН при этом методе достигает значения 0,4-0,6. Перегретый водяной пар закачивают под давлением 8 – 15 МПа при следующих благоприятных условиях: глубина продуктовного пласта не более 1200 м, толщина пласта, сложенного песчаниками и глинами, не менее 15 м, вязкость нефти в пластовых условиях выше 50 мПа-с, остаточная нефтенасыщенность пласта не менее 50%, плотность нефти в пластовых условиях не менее 900-930 кг/м3. Не рекомендуется проведение паротепловой обработки на заводненных участках в связи с большим расходом тепла.

Перед закачкой пара проводят ис­следование скважин: замер дебита неф­ти, газа и воды, пластового давления, температуры, статического уровня. За­тем промывают забой, спускают насоснокомпрессорные трубы с термостойким пакером, который устанавливают над верхними отверстиями фильтра. В неглу­боких скважинах (до 500—600 м) паро-тепловую обработку часто проводят без применения пакера. Для устранения опасных удлинений колонны насосно-компрессорных труб при закачке пара в пласт применяют специальное оборудо­вание, состоящее из колонной головки, арматуры устья и скважинного компен­сатора с телескопическим устройством.

Пар для теплового прогрева скважин получают от передвижных паровых ус­тановок (ППУ), парогенераторных уста­новок (ПГУ), монтируемых на шасси автомобиля высокой проходимости. Име­ются установки производительностью до 5,5 т/ч пара с рабочим давлением до 10 МПа и температурой пара до 315 °С. Также применяют мощные автоматизи­рованные передвижные парогенератор-ные установки типа УПГ-9/120 с пода­чей пара до 9 т/ч и рабочим давлением до 12 МПа. Установки укомплектованы системой КИП и автоматики. Управле­ние работой оборудования осуществля­ется из кабины оператора.

Прогрев призабойной зоны пласта обычно проводится в те­чение 5-7 сут, радиус повышенного температурного поля до­стигает при этом 1-1,2 м.

В мировой практике, в том числе и у нас в России, одним из основных способов разработки месторождений с вязкими нефтями (> 30 мПас) является воздействие на нефтяной пласт теплоносителем. Нагнетание теплоносителей предназначается для интенсификации разработки нефтяных месторождений и увеличения нефтеотдачи пластов.

В качестве теплоносителей для нагнетания в пласт с целью повышения нефтеотдачи применяются насыщенный водяной пар или горячая вода. Именно эти теплоносители характеризуются наибольшим среди известных рабочих агентов теплосодержанием и, следовательно, дают возможность обеспечить лучшую эффективность теплового воздействия на пласт.

Теплоперенос в пласте осуществляется конвективным и одновременно диффузионным путем. Следовательно, тепло, вводимое в пласт, передается не только жидкостям и газам, находящимся в каналах фильтрации, но и породе продуктивного пласта, а также окружающим породам. В этом основная отличительная особенность термических методов и их преимущество перед другими методами повышения нефтеотдачи, в которых перенос вытесняющего агента в пласте осуществляется только конвекцией. Охват тепловым воздействием приводит к активизации вытеснения нефти по всему объему прогретой зоны пласта, что в итоге обеспечивает значительный прирост коэффициента нефтеизвлечения.

Росту коэффициента нефтеизвлечения способствуют следующие основные механизмы: уменьшение вязкости нефти под воздействием температуры, тепловое расширение пластовой системы, улучшение проявления молекулярно-поверхностных сил в пласте.

Если вязкость нефти значительно снижается с увеличением температуры (тяжелые нефти) и коллектор гранулярный, то основной вклад в увеличение нефтеотдачи вносит механизм улучшения отношения вязкостей нефти и воды. Если же вязкость нефти с изменением температуры меняется умеренно или слабо, то преимущество получают механизмы теплового расширения пластовой системы и улучшения проявления молекулярно-поверхностных сил. Значение последних двух механизмов особенно велико для трещиновато-пористых пластов, в которых основная масса нефти сосредоточена в низкопроницаемых поровых блоках (матрицах) и вытеснить ее можно только за счет активизации тепломассообмена между трещинами и блоками.

При нагнетании в пласт пара, в отличие от горячей воды, проявляется дополнительный механизм увеличения нефтеотдачи - дистилляция легких фракций нефти в зоне пара.

Несмотря на то, что тепловые методы могут обеспечить достаточно высокую нефтеотдачу, применение их ограничивается экономической целесообразностью. Дело в том, что эти методы весьма энергоемки, требуют больших энергозатрат на производство теплоносителя и они экономически невыгодны для разработки месторождений с малой и повышенной вязкостью нефти (менее 30 мПас), где более эффективны заводнение, физико-химические методы и др.

Из соображений экономической целесообразности в документе министерства нефтяной промышленности "Методическое руководство по проектированию применения теплоносителей при разработке нефтяных месторождений" (РД 39.0147035.214.87) в качестве основных критериев при выборе объекта разработки были приняты ограничения: вязкость пластовой нефти  50 мПас, глубина залегания пласта до 1000 м, толщина нефтенасыщенного слоя  6 м.

Впоследствии мировой опыт показал, что тепловые методы эффективно применяются и на месторождениях менее вязких нефтей (от 30 мПас и выше) и, следовательно, область применения их значительно расширена.

Опыт показывает, что тепловые методы на месторождениях высоковязких нефтей могут обеспечить весьма значительное (иногда кратное) увеличение нефтеотдачи относительно естественных режимов разработки или методов заводнения.

Для сложных нефтяных залежей региона известные традиционные способы разработки, в том числе известные тепловые методы воздействия на пласт (ВГВ, ПТВ, ПТОС) малоэффективны, ввиду их низких коэффициентов нефтеизвлечения, не превышающих 25 %. Росту коэффициента нефтеизвлечения при термических методах воздействия на пласт способствует следующие основные механизмы:

  • уменьшение вязкости нефти под воздействием температуры;

  • тепловое расширение пластовой системы;

  • улучшение проявления молекулярно-поверхностных сил в пласте.

Наиболее крупными базовыми объектами применения тепловых методов в бывшем СССР явились месторождения Каражанбас и Кенкияк (Казахстан), Оха (Сахалин), Гремихинское (Удмуртия), Усинское (Коми), Зыбза - Глубокий Яр (Краснодарский край).

Создание новой технологии было непосредственно связано с решением проблемы разработки Гремихинского месторождения с вязкостью нефти от 90 до 180 мПа*с и глубиной залегания 1100 - 1200 метров в 1983 году. В результате проведения научно-исследовательских и промысловых исследований в течение ряда лет были обоснованы, созданы и внедрены в производство следующие новые технологии: технология импульсно-дозированного теплового воздействия на пласт - ИДТВ, импульсно-дозированного теплового воздействия на пласт с паузами - ИДТВ(П), технология теплоциклического воздействия на пласт - ТЦВП.

Технология ИДТВ существенно повышает эффективность теплового воздействия на пласт в сравнении с известными методами паротеплового воздействия (ПТВ) и воздействия горячей водой (ВГВ).

Преимущества ИДТВ:

  • многократное повторение циклов "нагрев-охлаждение" пласта в технологии ИДТВ приводит к значительному приросту нефтеотдачи блоков, а, следовательно, и пласта в целом;

  • в технологии ИДТВ достигается значительный эффект энергосбережения;

  • в пласт закачивается строго расчетное количество теплоносителя, определяемое из условия создания и поддержания в пласте эффективной температуры - Тэф.

  • циклическая закачка теплоносителя и холодной воды при ИДТВ сокращает потери тепловой энергии от устья до забоя скважины. Значительная часть тепла, теряемого в стволе скважины в периоды нагнетания теплоносителя, в периоды нагнетания холодной воды возвращается обратно и потоком жидкости доставляется в пласт. Иными словами, циклический процесс ИДТВ препятствует рассеиванию тепловой энергии в горные породы, окружающие ствол скважины;

  • в технологии ИДТВ меньше теплопотерь и в самом пласте, связанных с уходом тепла в окружающие пласт (верхние и нижние) горные породы.

Технология ИДТВ(П), обладая всеми свойствами технологии ИДТВ, обеспечивает дополнительный прирост нефтеизвлечения не менее 3 %.

Преимущества технологии ТЦВП сводятся следующему:

  • ускоряется охват продуктивного пласта тепловым воздействием;

  • увеличивается полнота прогрева пласта;

  • ускоряются в целом темпы добычи нефти;

  • замедляются темпы обводнения продукции добывающих скважин;

  • происходит значительный рост коэффициента охвата коллекторов вытеснением и конечного нефтеизвлечения (для Гремихинского месторождения рост нефтеизвлечения до 45 % против 29 % при ВГВ).

При термополимерном воздействии дополнительно имеет место фактор теплового эффекта. За счет прогрева вязкость нефти может быть уменьшена в 2-3 раза. Отсюда следует, что термополимерное воздействие (ТПВ) может применяться на месторождениях с вязкостью нефти до 150 мПа·с.

Ответить на вопрос, какая технология лучше на данном объекте, возможно только по результатам анализа геологического строения залежей и физико-химических свойств нефти, промышленных испытаний и оценки технологической и экономической эффективности методов.

Оборудование для нагнетании в пласт пара (горячей воды) состоит из паровых котлов, коммуникации пара, устьевого и внутрискважинного оборудования нагнетательных скважин. Рассмотрим каждый вид оборудования в отдельности.

Для закачки теплоносителя в нефтяные пласты используют, в основном, специальные парогенераторные и водонагревательные установки, которые вырабатывают пар и горячую воду требуемых параметров и качества. При давлении нагнетания до 40 МПа могут использоваться паровые котельные общего типа, в которых применяется котел типа ДКВР. Теплогенерирующая установка выбирается из имеющего в серийном производстве оборудования таким образом, чтобы она обеспечивала доставку теплоносителя к забоям нагнетательных скважин с заданными параметрами (давлением, температурой, сухостью). Выбор типа теплогенерирующей установки осуществляется исходя из необходимого рабочего давления и производительности. В случае закачки горячей воды необходимое давление жидкого теплоносителя на выходе из теплогенерирующей установки определяется как и при расчете давления парообразного носителя. Давление горячей воды на выходе из теплогенерирующей установки должно быть выбрано с учетом потерь давления в наземных трубопроводах и при заданной температуре нагрева горячей воды должно быть выше давления насыщения для пара при температуре горячей воды, чтобы не вызвать вскипание в трубопроводах и соответственно гидравлические удары.

При определении единичной номинальной производительности теплогенерирующих установок и их количества в группе руководствуются следующим положением: количество установок, их номинальная производительность определяется из годового объема нагнетания теплоносителя в пласт. Установки на месторождениях монтируются в группы. Максимальное число установок в группе, по мере нарастания темпов разработки месторождения, не должно превышать 4. Исходя из практических соображений и унификации оборудования в каждой группе должна быть резервная установка.

Основные требования, предъявляемые к конструкции паронагнетательной скважины (ПНС), сводятся к следующему:

- конструкция нагнетательной скважины должна обеспечивать безаварийную работу в условиях нагнетания в пласт теплоносителя и последующей закачки в пласт холодной воды для продвижения тепловой оторочки:

- конструкция скважины должна обеспечивать термические напряжения, не приводящие к нарушению прочности обсадной колонны и цементного пласта.

Эффективным средством снижения термических напряжений в элементах конструкции является снижение температуры на внутренней поверхности обсадной колонны путем установки пакеров и тепловой изоляцией насосно-компрессорных труб, по которым нагнетается теплоноситель.

Таблица 1

Тепловые методы, на Гремихинском месторождении

применяемые

Показатели

Все

ВГВ

ИДТВ

ИДТВ(П)

ТЦВП

Дополнительная добыча нефти, тыс, т

2952,4

654,7

1283,4

1046,3

317,4

Закачка, тыс.т

11038,6

3433,7

4014,5

2879,1

711,3

теплоносителя холодной воды

4130,2

0

2167,4

1891,3

71,5

горячей + холодной воды

15168,8

3433,7

6181,9

4770,4

782,8

Удельный расход теплоносителя на 1 т дополнительно добытой нефти, тыс. т

3,7

6,2

3,4

32

2,8

Конечный КИН, %

29

37

40

45

Таблица 2