Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электроника и МПУ_Лекция 5-тезисы.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
1.64 Mб
Скачать

Эпитаксиальные диоды

Эпитаксиальные (планарные, эпитаксиально - планарные диффузионные диоды) изготавливаются методом эпитаксии и локальной диффузии.

Эпитаксией называется процесс наращивания монокристаллических слоев на подложку, выполняющую роль несущей конструкции структуры с сохранением ориентации кристаллов подложки.

Эпитаксия по­зволяет выращивать слои любого типа проводимости, требуемого удельного со­противления и любой толщины (до нескольких микрометров).

Локальной диффузией называется создание p-n перехода путем диффузии примесных атомов в эпитаксиальный слой через окно в маске (например, из оксида кремния)

Рис. 5.10 Эпитаксиально -планарный диод, p-n переход -1

Последовательность изготовления: базу изготовляют путем наращивания на подложке (4) с повышен­ной проводимостью эпитаксиального n-слоя (3) с пониженной про­водимостью, окисление (2) - создание оксидного слоя Si02, формирование "окна" в оксидном слое двуокиси кремния Si02 путем травления пленки окисла, затем производят диффузию донорной примеси (бора или алюминия) в эпитаксиальный слой через окно, создается р-n переход (1).

Производится металлизация площадок на n+ и p+ для выводов.

Производится формирование выводов и монтаж в кор­пус.

Пла­нарные диффузионные диоды характеризуются высокой надежностью, стабильностью параметров и большим сроком службы.

Плоскостные диоды имеют большие площади перехода, вследствие чего им присущи большие емкости и большие рабочие токи (до сотен и даже тысячи ампер). Используются в низкочастотных мощных электронных устройствах (силовых).

Пример: Выпрямительные диоды

Предназначены для преобразования переменного напряжения (тока) в постоянное напряжение (ток) в схемах электронных стабилизаторов.

Полупроводниковые выпрямительные диоды по эксплуатационной надежности и сроку службы значительно превосходят все остальные типы вентилей (ламповые). Поэтому они наиболее широко используются в источниках питания.

ВАХ диодов - основная характеристика полупроводниковых диодов.

Пример

Эквивалентная схема выпрямительного диода

Рис. 5.11 Эквивалентная электрическая схема диода

rpn = T/I (5.1)

T температурный потенциал;

rб – единицы- десятки [Ом];

Сд – единицы- десятки [пФ]

Прямое паде­ние напряжения выпрямительных кремниевых диодов не превышает

(1-2)В и больше, чем у германиевых.

Т.о., в выпрямительных устройствах низких напряжений выгоднее применять германиевые диоды.

Но кремниевые диоды имеют во много раз меньшие обратные токи при оди­наковом напряжении, чем германиевые поэтому они получили преимущественное распространение.

Допустимое обратное напряжение германиевых диодов лежит в пределах:

Uo6pGe= 100- 400В, кремниевых диодов: Uo6psi = 1 000 - 1500B.

Пример: выпрямитель на диоде

Работа полупроводникового выпрямительного диода основана на свойст­ве

p-n перехода пропускать ток только в одном направлении. Простейшая (однополупериодная) схема выпрямителя на полупроводниковом диоде рис.5.12:

Рис. 5.12 Схема однополупериодного выпрямителя

Трансформатор служит для преобразования величины напряжения, т.е. для получения заданного напряжения на выходе выпрямителя.

В этой схеме ток через диод и нагрузку RH протекает только в положительные полупе­риоды входного напряжения Uex, и кривая напряжения на нагрузке будет состоять из положительных полуволн синусоиды (если емкость С отключена)

Рис. 5.13

Емкость С сглаживает однополярные пульсации напряжения на нагрузке Rн.

Параметры выпрямительного диода (основные)

1. Максимально допустимый прямой ток диода Inр. max

2. Прямое падение напряжения Unp - значение прямого напряжения на диоде при заданном начении прямого тока;

3. Максимально допустимое обратное напряжение Uобр.max

4. Максимальная рабочая частота, fmax

5. Максимальная допустимая рассеиваемая мощность Рдоп.max

Светоизлучающие диоды (СИД), или светодиоды

Рис. 5.14 УГО

Светодиод - излучающий полупроводниковый прибор с одним электрон­но-дырочным переходом, предназначенный для непосредственного преобразо­вания электрической энергии в энергию некогерентного светового излучения.

СИД - универсальный излучатель в оптоэлектронике. Он используется в качестве индикатора включения блоков, для визуального отображения появле­ния высоких потенциалов на выходах ИМС, является элементом цифровых и цифробуквенных мозаичных индикаторов и т.п.

Устройство СИД отличается от обычного диода, в принципе, только наличием линзы, как правило, пластмассовой.

Рис.5.15 Устройство светодиода

В качестве полупроводника используется карбид кремния (SiC), арсенид гал­лия (GaAs), нитрид галлия (GaN), фосфид галлия (GaP) и др.

Рис. 5.16 7.11 Схема включения светодиода

При подаче на p-n переход прямого напряже­ния наблюдается интенсивная инжекция неос­новных носителей заряда: электронов в р-область и дырок в n-область.

Инжектирован­ные неосновные носители рекомбинируют с основными носителями в данной области полупроводника.

При рекомбинации выделяется энергия. У многих полупроводников рекомбинация носит безызлучательный характер - энергия, выделяющаяся при реком­бинации, отдается кристаллической решетке, фононам, т.е. превращается в конечном ито­ге в тепло.

У полупроводников, выполненных на основе вышеперечис­ленных материалов, рекомбинация является излучательной - энергия при ре­комбинации выделяется в виде квантов излучения - фотонов. Поэтому у таких полупроводников прохождение через p-n переход тока в прямом направлении сопровождается некогерентным оптическим излучением определенного спек­трального состава.

Светодиод, как элемент электрической схемы, характеризуется ВАХ.

Ход ВАХ светодиода не отличается от ВАХ обычного диода.

Светодиод, как излучатель, характеризуют:

1. Излучательной (яркостной) характеристикой - зависимостью яркости от тока

В = f(Iпр), 5.2

где В - яркость свечения [кд/м ];

2. Мощностной характеристикой - зависимостью мощности излучения от тока;

3. Спектральной характеристикой - зависимостью относительной спектральной плотности мощности от длины волны излучения.

Рис. 5.17 Излучательная и мощностная характеристики светодиода

Рис. 5.18 Спектральная характеристика светодиода

Спектральные характеристики имеют выраженный макси­мум на некоторой длине волны mах. Величина mах определяет цвет излуче­ния, зависит от материала полупроводника диода и составляет 1,7 мкм для SiC; 0,9 мкм - GaAs.

При необходимости, можно выбрать светодиод со спектральной характеристикой, близкой к кривой относительной видимости глаза.

Электрические параметры светодиода:

1. Максимальный и номинальный прямой ток Iпр max, Iпр ном (диапазон лежит до 50ma, у СИД малой мощности);

2. Номинальное прямое напряжение Uпр ном ;

3. Максимальное обратное напряжение Uобр max (4-12 В);

4. Допустимая рассеиваемая мощность Ррасс max [мВт];

5. Диапазон рабочих температур - 60°-+70°С.