
- •Учебно-методический комплекс учебной дисциплины
- •Содержание
- •Пояснительная записка
- •Цели и задачи освоения дисциплины
- •Место дисциплины в структуре ооп
- •Требования к результатом освоения дисциплины
- •Объем дисциплины и виды учебной работы
- •Примерный тематический план дисциплины
- •Содержание блока «общая и неорганическая химия» и интерактивное сопровождение дисциплины (2 семестр)
- •Содержание блока «аналитическая химия» и интерактивное сопровождение дисциплины (3 семестр)
- •Методические рекомендации по организации изучения дисциплины Методические рекомендации преподавателю
- •Методические рекомендации бакалавру
- •Примерный перечень вопросов к зачету блок «общая и неорганическая химия », 2 семестр
- •Примерный перечень вопросов к экзамену блок «аналитическая химия », 3 семестр
- •Примерный перечень тем рефератов блок «общая и неорганическая химия», 2 семестр
- •Блок «аналитическая химия », 3 семестр
- •Примерный перечень индивидуальных заданий
- •Блок «общая и неорганическая химия», 2 семестр
- •Примерные вопросы для тестирования
- •Блок «аналитическая химия», 3 семестр
- •Критерии оценивания знаний бакалавров по дисциплине
- •Формирование балльно-рейтинговой оценки работы бакалавра
- •2 Семестр
- •Формирование балльно-рейтинговой оценки работы бакалавра
- •Критерии выставления зачёта (2 семестр)
- •Критерии оценивания знаний бакалавров на экзамене (3 семестр)
- •Критерии оценивания работы бакалавра по дисциплине «Химия»
- •Учебно-методическое и информационное обеспечение дисциплины
- •Основная литература
- •Дополнительная литература
- •Основная литература
- •Дополнительная литература
- •Обеспеченность учебно-методической документацией по дисциплине «Химия»
- •Возможность доступа бакалавров к электронным фондам учебно-методической документации
- •Лист согласования рабочей программы учебной дисциплины «Химия»
- •4. Учебно-методические материалы к дисциплине
- •Лекция № 2 Атомно-молекулярное учение. Основные понятия и законы химии (2 часа).
- •1. Реакции соединения
- •2. Реакции разложения
- •3. Реакции замещения
- •4. Реакции обмена.
- •5. Реакции переноса
- •1. Протолитические реакции
- •2. Окислительно-восстановительные реакции
- •3. Лиганднообменные реакции
- •Лекция № 3 Строение атома и периодический закон. Химическая связь и строение вещества (2 часа).
- •Квантово-механическая модель строения атома
- •Орбитали
- •Периодический закон
- •Валентность элементов и Периодическая система
- •Валентность элементов в ковалентных соединениях
- •Химическая связь
- •Классификация химических связей
- •Электроотрицательность элементов
- •Метод валентных связей
- •Межмолекулярное взаимодействие
- •Химическая связь
- •Метод молекулярных орбиталей
- •Геометрическая форма молекул
- •Аморфные вещества
- •Кристаллические вещества
- •Типы кристаллических решеток
- •Изоморфизм и полиморфизм
- •Лекция № 4 Закономерности химических процессов (2 часа).
- •Влияние концентрации реагентов на скорость химической реакции
- •Лекция № 5 Элементы главных подгрупп ( s- и p-элементы) (2 часа). Общая характеристика неметаллов
- •Лекция № 6 Элементы побочных подгрупп ( d- и f-элементы) (2 часа).
- •Основная литература
- •Дополнительная литература
- •Лекция № 2 Химический анализ. Классификация методов анализа (2 часа).
- •Основная литература
- •Дополнительная литература
- •Лекция № 3 Теоретические основы аналитической химии (2 часа). Цели:
- •Формирование знаний о приемах анализа веществ
- •Основная литература
- •Дополнительная литература
- •Формирование знаний о приемах качественного анализа веществ
- •Овладение процессом творчества (поиск идей, рефлексия, моделирование) (ок-28).
- •Основная литература
- •Дополнительная литература
- •Лекция №5 Характерные и специфические реакции. Деление ионов на аналитические группы. Кислотно-основная классификация. Систематический и дробный ход анализа (2 часа).
- •Основная литература
- •Дополнительная литература
- •Аналитическая кислотно -основная классификация ионов
- •Лекция № 6 Количественный анализ (3 часа).
- •Основная литература
- •Дополнительная литература
- •Лекция № 7. Физико-химические методы анализа (3 часа).
- •Основная литература
- •Дополнительная литература
- •Лекция № 8 Современные физико-химические методы анализа (2 часа).
- •Основная литература
- •Дополнительная литература
- •Химическая посуда и обращение с нею
- •Получение и исследование свойств щелочей
- •Получение кислот
- •Получение кислой соли
- •Вопросы и задачи
- •Определение эквивалентной массы металла
- •Определение молярной массы углекислого газа
- •Содержание
- •Требования к умениям бакалавров Знать
- •Практическое занятие № 6 Энергетика и направленность химических процессов. Скорость химических реакций. Химическое равновесие. Катализ ( 1 час). Цели
- •Содержание
- •Требования к умениям бакалавров Знать
- •Практическое занятие № 7 Растворы. Свойства растворов. Электролитическая диссоциация ( 1 час). Цели
- •Содержание
- •Требования к умениям бакалавров Знать
- •Гидролиз
- •Содержание
- •Требования к умениям бакалавров Знать
- •Окислительно-восстановительные реакции
- •Вопросы и задачи
- •Практическое занятие № 9 Изучение свойств неметаллов (3 часа). Цели
- •Содержание
- •Требования к умениям бакалавров Знать
- •Окислительные и восстановительные свойства серы
- •Сероводород и его свойства
- •Получение сульфидов и изучение их растворимости
- •Практическое занятие № 10 Изучение свойств металлов( 3 часа). Цели
- •Содержание
- •Требования к умениям бакалавров Знать
- •Взаимодействие железа с разбавленной и концентрированной соляной кислотой
- •Взаимодействие цинка с водой и раствором аммиака
- •В присутствии аммиака и сульфида натрия
- •Пассивация железа в концентрированной серной и азотной кислотах
- •Взаимодействие металлов со щелочами
- •Взаимодействие металлов с растворами солей
- •Основная литература
- •Дополнительная литература
- •Требования к умениям бакалавров Знать
- •Образование и диссоциация соединений с комплексным катионом
- •Образование и диссоциация соединений с комплексным анионом
- •Различие между простыми и комплексными ионами железа (lll)
- •Прочность и разрушение комплексных ионов
- •Диссоциация двойной соли
- •Влияние концентрации раствора на комплексообразование
- •Гидратная изомерия аквакомплексов
- •11. Рассчитать термодинамическую вероятность следующей реакции и объяснить ее направленность:
- •Основная литература
- •Дополнительная литература
- •Зависимость растворимости осадков труднорастворимых электролитов от величины их произведения растворимости
- •Нахождение рН растворов
- •Контрольные вопросы и задачи
- •Основная литература
- •Дополнительная литература
- •Анализ анионов
- •Контрольные вопросы и задачи
- •Основная литература
- •Дополнительная литература
- •Требования к умениям бакалавров Знать
- •Основная литература
- •Дополнительная литература
- •Требования к умениям бакалавров Знать
- •Фотоколориметрическое определение железа
- •Определение содержания железа в анализируемом растворе.
- •11. Особенности кулонометрии и рамки ее использования
- •Основная литература
- •Дополнительная литература
- •5 Глоссарий
- •6 Фонды оценочных средств (примеры решения задач по основным темам курса, задачи и вопросы для самостоятельного решения) Основные классы неорганических соединений. Получение кислот, оснований и солей.
- •Основные химические понятия. Газовые законы. Решение расчетных задач: а) вывод формул по данным анализа; б) расчеты по химическим формулам и уравнениям.
- •При 170с и давлении 1,040105 Па масса 0,62410-3 м3 газа равна 1,5610-3 кг. Определите молекулярную массу газа.
- •Квантово-механическая модель атома водорода. Квантовые числа как параметры, определяющие состояние электрона в атоме. Физический смысл квантовых чисел. Спиновое квантовое число
- •Vводы - ?
- •Реакции окисления-восстановления. Классификация окислительно-восстановительных реакций. Электронная теория окисления. Правила составления уравнений овр. Роль среды в протекании овр.
- •Изучение свойств металлов Изучение свойств неметаллов
- •Контрольная работа общая и неорганическая химия
- •Примеры решения задач по аналитической химии
- •Количественный анализ.
- •7. Методические рекомендации по организации процесса изучения дисциплины Методические рекомендации преподавателю
- •Методические рекомендации бакалавру
- •Блок «общая и неорганическая химия», 2 семестр
- •Блок «аналитическая химия », 3 семестр
- •8. Материально-техническое оснащение дисциплины
- •9. Перечень учебно-методических публикаций по дисциплине, изданных сотрудниками кафедры
Определение молярной массы углекислого газа
Равные объемы газов, взятых при одинаковой температуре и одинаковом давлении, содержат равное число молекул (закон Авогадро). Отсюда следует, что массы равных объемов двух газов относятся друг к другу, как их молекулярные или численно им равные молярные массы:
M1/m2= M1/M 2
где m1 и m2 – массы газов; M1 и M2 – молярные массы этих газов.
Отношение массы данного газа к массе того же объема другого газа, взятого при той же температуре и том же давлении, называется относительной плотностью первого газа по второму. Например, масса одного литра диоксида углерода равна 1,98 г, а масса одного литра водорода при тех же условиях составляет 0,09 г, следовательно, плотность CO2 по водороду равна:
1,98 : 0,09 = 22
Обозначим относительную плотность газа буквой D. Тогда
D=M1/m2= M1/M 2, откуда М1 = D·М2,
то есть молярная масса газа равна его плотности по отношению ко второму газу, умноженному на молярную массу второго газа.
Часто плотность газов определяют по отношению к самому лёгкому газу – водороду. Молярная масса водорода равна 2 г/моль, поэтому уравнение для расчета молярных масс газов имеет вид
М = 2.DH2
Молярную массу газа вычисляют, исходя из его плотности по воздуху принимая среднюю молекулярную массу равной 29 г/моль. В этом случае уравнение для расчета молярных масс газов имеет вид
М = 29.Dвозд.
Молярную массу газа можно определить также через молярный объем, равный 22,4 л/моль. Для этого находят объем, занимаемый при нормальных условиях определенной массой газообразного вещества, а затем вычисляют массу 22,4 л этого вещества. Полученная величина является его молярной массой. Измерения объемов газов обычно проводят при условиях, отличающихся от нормальных. Для приведения объема газа к нормальным условиям (н.у.) используется уравнение Клапейрона:
PV/T=P0V0/T0,
где V – объем газа при давлении P и температуре T; V0 – объем газа при нормальном давлении P0 (101325 Па) и температуре T0 (273 К).
Молярную массу газа можно также вычислить по уравнению состояния идеального газа (уравнению Клапейрона–Менделеева)
PV=mMRT
где P – давление газа (Па); V – его объем (м3); m – масса (г); M – молярная масса (г/моль); T – температура (К); R = 8,31 Дж/(моль·К) – молярная газовая постоянная.
Колбу закрыть пробкой и отметить чертой уровень, до которого пробка вошла в горло колбы. Взвесить на технохимических весах колбу с пробкой с точностью до 0,02 г (m1). Наполнить колбу диоксидом углерода из аппарата Киппа. Газ следует пропускать в колбу медленно, так, чтобы можно было считать пузырьки в промывных склянках. Через 5 мин, не закрывая кран у аппарата Киппа, медленно вынуть газоотводную трубку из колбы и тотчас закрыть колбу пробкой; после этого закрыть кран. Взвесить колбу с диоксидом углерода на тех же весах и с той же точностью, что и колбу с воздухом (m2). Измерить рабочий объем колбы V1, для чего наполнить колбу дистиллированной водой до черты на шейке колбы и замерить объем воды, вылив её в мерный цилиндр. Записать значения атмосферного давления и температуры, при которых проводится опыт, а также уравнение получения углекислого газа при взаимодействии мрамора с соляной кислотой. Вычислить объем газа V0 при н. у. по уравнению Клапейрона. Вычислить массу воздуха (m3) в объеме колбы, учитывая, что при 0 °C и 101,3 кПа масса одного литра воздуха равна 1,293 г. Найти массу пустой (без воздуха) колбы с пробкой:
m4 = m1 – m3
Найти массу диоксида углерода в объеме колбы m5 = m2 – m4
Определить относительную плотность CО2 по воздуху:
Dвозд. = m5/m3
Вычислить молярную массу CO2 тремя способами:
а) по воздуху:
МCО2 = 29·Dвозд.
б) по закону Авогадро: МCО2 =22,4·m5/V0
в) по уравнению Клапейрона–Менделеева:
МCО2= P·V·m5/R·T
Вычислить среднее значение молярной массы углекислого газа с точностью до одного знака после запятой.
Определить погрешность опыта, сравнивая среднее опытное значение с теоретической величиной (44,0 г/моль), и оформить отчёт.
Вопросы и задачи
Во сколько раз углекислый газ тяжелее воздуха?
В аппарате Киппа для получения СО2 из мрамора используется соляная кислота. Почему нельзя использовать более дешевую серную кислоту?
При постоянном давлении и температуре масса одного литра водорода равна 0,082 г, а одного литра воды – 1 кг. Возможно ли определение плотности воды по водороду? Если невозможно, то почему?
Масса одного литра газа равна 2,86 г. Определите его молярную массу.
Плотность газа 1,96 г/л. Определите его молярную массу.
Установите формулу газообразного вещества, содержащего углерод (81,82 %) и водород (остальное), масса одного литра которого при нормальных условиях равна 2,6 г.
При давлении 2*102 Па объем газа равен 2 дм3. Определить, при каком давлении объем газа будет равен 1 м3, если температура остается постоянной.
В сосуде емкостью 2 л содержится 10 г кислорода при 0 °С. Под каким давлением находится кислород, если ( при н.у.) плотность его равна 1,43 г/л?
В промывных башнях газ охлаждается с 350 до 35 °С. Какой объем будут занимать 100 м3 газа после промывания, если давление остается постоянным?
Плотность воздуха (при н.у.) равна 1,29 г/л. При какой температуре плотность его будет равна 1,1 г/л, если давление постоянное?
Открытый сосуд нагревается при постоянном давлении от 17° до 307 °С. Какая часть воздуха (по массе), находящегося в сосуде, при этом вытесняется?
20 л азота, находящегося при 17 °С и давлении 120 кПа, требуется сжать до объема 5 л. Вычислить конечное давление азота, если температура его после сжатия повысилась до 30 °С.
30 л водорода собраны над водой при 18 °С и давлении 90 кПа. Какой объем (при н.у.) займет это же количество сухого водорода? Давление водяного пара при этой температуре равно 2061 Па.
Определить массу 3 л азота при 15 °С и давлении 90 кПа. Плотность азота (при н.у.) равна 1,25 г/л.
Какой объем займет 1 моль идеального газа при 20 °С и давлении 152 кПа?
Определить плотность озона (при н.у.).
Какой объем (при н.у.) занимают 2 кг оксида углерода (IV)?
Вычислить в граммах массу молекулы кислорода.
Масса 800 мл газа (при н.у.) равна 1 г. Найти относительную молекулярную массу этого газа.
При 17 °С в стальном баллоне находится 8,2 кг кислорода под давлением 1,52*10-2 кПа. Сколько литров сжатого кислорода содержится в баллоне? Сколько литров газа (при н.у.) можно получить из баллона?
На сколько больше (по массе) может вместиться азота в газгольдер емкостью 2500 м3 зимой при —30 °С по сравнению с летним периодом при t 27 °С, если давление в нем равно 120 кПа?
При какой температуре 1,5 г кислорода займут объем, равный 900 мл, если давление равно 122 кПа?
Масса 982,2 мл газа при 100 °С и давлении 986 Па равна 10 г. Определить молярную массу газа.
Какой объем займут 2*1023 молекул хлора при 27 °С и давлении 80 кПа?
Определить число молей газа, содержащихся в 5000 л, при 300 °С и давлении 154 кПа.
Методический инструментарий преподавателя:
-активные формы: фронтальный опрос.
Средства контроля: Тест, задания и задачи (см. фонд оценочных средств)
Содержание внеаудиторной работы бакалавра при подготовке к занятию
Владеть содержанием вопросов (по лекции).
Законспектировать вопосы: Представление о строении атома в свете современных работ квантовой физики.
Подготовиться к диагностической самостоятельной работе в форме опроса и теста
Изучить термины по данной теме
Темы рефератов:
Лантаноиды и актиноиды- редкоземельные элементы. Элементы побочной подгруппы III группы.
Новые элементы в периодической системе химических элементов Д.И. Менделеева.
Литература
Основная литература
1. Ершов Ю.А., Попков В.А., Берлянд А.С., Книжник А.З. Общая химия. Биофизическая химия. Химия биогенных элементов: учеб. для вузов. - М.: Высшая школа, 2007. - 559 с. (Библиотека УлГПУ).
2. Князев Д.А., Смарыгин С.Н. Неорганическая химия: учебник для вузов. – М.: Дрофа, 2005. – 594 с. (Электронный ресурс. – Режим доступа: http://www.knigafund.ru/books/38247).
Дополнительная литература
1. Кузьменко Н.Е. Сборник задач и упражнений по химии. - М.: Экзамен, 2002. – 542 с. (Библиотека УлГПУ)
2. Глинка Н.Л. Общая химия: учеб. пособие для нехим. специальностей вузов. - М.: Интеграл-Пресс, 2007. - 727 с. (Библиотека УлГПУ)
3. Лидин Р.А. Химия. Полный сборник задач: для школьников старших классов и поступающих в вузы. – М.: Дрофа, 2007 - 610 с. (Электронный ресурс. – Режим доступа: http://www.knigafund.ru/books/38248).
Практическое занятие № 5 Периодический закон и периодическая система химических элементов Д.И.Менделеева. Связь положения элемента в периодической системе с электронным строением его атома. Особенности электронных конфигураций атомов элементов главных и побочных подгрупп. Связь свойств элементов с их положением в периодической системе. Энергия ионизации. Сродство к электрону. Электроотрицательность. Основные характеристики химической связи: длина, энергия, направленность. Валентный угол. Метод ВС и Метод молекулярных орбиталей (ММО) ( 2 часа).
Цели
Готовность к поиску, созданию распространению, применению новшеств и творчества в образовательном процессе для решения профессионально-педагогических задач (ПК-13).
Формирование представлений о пространственнной структуре молекул