
- •1. Электроизоляционные материалы и их классификация.
- •3. Для каких целей в источниках постоянного тока на выходе устанавливается конденсатор.
- •4. Классификация полупроводниковых приборов. Принцип действия тиристоров.
- •5. Способы пуска и механические характеристики двигателей постоянного тока.
- •6. Экономическая сущность, классификация и структура основных фондов.
- •7. Определение диапазона регулирования скорости данного привода при реостатном способе управления.
- •11. Прибыль и рентабельность. Пути их повышения.
- •12. Сможет ли двигатель работать длительно с моментом сопротивления равным 1,4 ном. Ответ обосновать.
- •13. Алгебраические критерии устойчивости сау.
- •15. Диагностика. Способы выполнения. Типы.
- •16. Виды цен и их структура.
- •17. Привести все возможные способы пуска синхронного электродвигателя и дать их краткую характеристику.
- •18. Какие виды релейной защиты необходимо предусмотреть для электродвигателей
- •21. Оборотные фонды и оборотные средства.
- •22. Определение диапазона регулирования скорости данного привода при реостатном способе управления.
- •23. Способы пуска, торможения и регулирования скорости асинхронного электродвигателя.
- •24. Синхронно-шаговые двигатели. Принцип работы. Возможность применения их для привода вентилятора.
- •26. Факторы роста производительности труда.
- •27. Вольтамперные характеристики: диода, стабилитрона, транзистора.
- •28. Чем отличаются: проводник, диэлектрик, изолятор, полупроводник.
- •29. Принцип работы компаратора.
- •30. Общее, поэлементное, дробное резервирование. Формулировки и характерные особенности. (383 аэп)
- •31. Амортизация основных фондов.
- •32. Режимы работы двигателей. Методы расчета мощности двигателей. (186 аэп)
- •33. Типы тиристорных преобразователей частоты.
- •35. Надежность, способы повышения надежности. (367 аэп)
- •36. Показатели общей (абсолютной) и сравнительной экономической эффективности.
- •37. Программируемые логические матрицы, их использование.
- •38. Инверторный режим трехфазного нулевого преобразователя-выпрямителя.
- •39. В каких случаях в электроприводах необходимо использовать автоматическое управление.
- •40. Какова неисправность в двигателе постоянного тока, если при его включении с нагрузкой, он стоит и гудит, а на холостом ходу, двигатель идет в разнос?
- •41. Организационно-правовые формы бизнеса.
- •43. Произвести сравнение механических характеристик электропривода при реостатном и тиристорном управлении. Достоинства и недостатки рассмотренных методов.
- •44. Какие виды защиты необходимо предусмотреть для электропривода механизма подъема крана.
- •45. Электропроводность диэлектриков. Пробой диэлектриков.
- •46. Показатели эффективности использования Основных Фондов.
- •47. Усилители типы требования.
- •48. Преобразователи частоты с явно выраженным звеном постоянного тока.
- •49. Особенности электропитания цехов с металлорежущими станками.
- •50. Как запустить трехфазный асинхронный двигатель от однофазной сети.
- •51. Методы оценки качества продукции.
- •52. Как выбранный электродвигатель проверить по перегрузочной способности?
- •53. Способы регулирования скорости асинхронного двигателя. Нарисовать механические характеристики при этих способах регулирования.
- •55. Классификация свехпроводников и проводников.
- •56. Основные цели маркетинга.
- •57. Типы регистров.
- •58. Выбор плавких предохранителей для данного типа э/п.
- •59. Как рассчитывается общая интенсивность отказов сау? (368 аэп)
- •60. Определение диапазона регулирования скорости электропривода и плавности. Привести аналитические выражения по их расчёту.
- •61. Пути улучшения использования оборотных средств.
- •62. Достоинства и недостатки ручного и автоматического управления электроприводов металлорежущего станка.
- •64. Способы построения десятичных счетчиков.
- •65. Произвести синтез системы контроля исправностью работы тиристора.
- •66. Калькуляция себестоимости
- •67. Дать определение интерфейса.
- •68. Основные элементарные звенья тау, их характеристики.
- •69. Преобразователи частоты с неявно выраженным звеном постоянного тока. Типы. Характеристики.
- •70. В какую сторону проводит полупроводниковый материал. В любую
- •71. Источники формирования оборотных средств.
- •72. Маркетинговая информация.
- •73. Принцип работы гистерезисного шагового двигателя.
- •74. Метод составления алгебраических уравнений на основании релейно-контакторного варианта.
- •76. Робототехнические устройства. Возможное количество степеней свободы у роботов. Экономическая целесообразность использования роботов.
- •77. Метод эквивалентных величин при выборе мощности двигателя.
- •78. Оперативные запоминающие устройства.
- •80. Количественные характеристики надежности.
- •81. Сметная стоимость ниокр.
- •82. Достоинства и недостатки двигателей постоянного и переменного тока.
- •83. Классификация схем выпрямителей.
- •84. Вероятность безотказной работы. Формулы, обоснования, графики (383 аэп)
- •85. Порядок проведения технико-экономических расчетов
- •86. Причины возникновения и параметры аварийных режимов преобразовательных устройств
- •87.Автоматические станочные линии. Жесткие и гибкие станочные линии. Принцип работы.
- •88. Переходные процессы в электроприводах. Способы уменьшения времени и потери в переходных режимах.
- •89. Способы регулирования скорости электропривода металлорежущих станков.
- •90. Нематериальные активы
- •91. Надежность, способы повышения надежности. (367 аэп)
- •92. Счётчики, типы, разновидности. Способы построения
- •93. Апериодическое звено (аз). Характнристики.
- •94 Датчики тока . Требования Типы.
- •95. Пути улучшения использования основных фондов
- •96.Автоматические станочные линии. Принцип работы.
- •97 Магнитоуправляемый диод. Фотодиод. Принцип работы. Особенности
- •98. К чему может привести неправильное положение щеток электродвигателя постоянного тока.
- •99. Причины возникновения аварийных режимов в преобразователях
- •100.Прямые и обратные транзисторы. Принцип работы.
- •101. Автоматическое управление электроприводов. Необходимость автоматического управления.
- •102. В чем суть эффекта Холла, его практическое применение. Эффект Вигонда.
- •104 .Типы двухтактных триггеров. Временные диаграммы.
- •105 .Инверторный режим тиристорных преобразователей.
- •106. Двухфазные двигатели. Принцип работы. Конструкция.
- •107.Мультиплексоры. Принцип построения.
- •108. . Методы гашения дуги в Эл аппаратах.
- •109. Схемы преобразователей постоянного тока на тиристорах (в схемах меняем диоды на тиристоры)
- •110. Надбавки, доплаты, премии. Дальнейшее развитие организации заработной платы.
- •111. Сглаживающие дроссели, токоограничивающие и уравнительные реакторы. Назначение. Области использования. Различие.
- •112. Какое назначение короткозамкнутого витка на полюсе эл.Магнитов перемен. И пост тока.
- •113. Механические характеристики дпт последовательного возбуждения.
- •114. Надежность. Основные параметры. (спр 367)
- •115. Производительность труда – сущность и показатели.
- •117. Определить неисправность асинхронного двигателя с фазным ротором, если он запускается при незамкнутой цепи ротора.
- •118. Для каких целей используются контакторы и пускатели. Отличия. Требования.
7. Определение диапазона регулирования скорости данного привода при реостатном способе управления.
Диапазон регулирования скорости при вращательном движении максимальной (МАХ) и минимальной (МИН) угловыми скоростями изделия (шпинделя): D = МАХ/МИН; при поступательном движении максимальной (VMAX) и минимальной (VMИН) линейными скоростями движения: D = VMAX/ VMИН; при поступательном движении подачи максимальной (SMAX) и минимальной (SMИН) подачами: D = SMAX/ SMИН.
Плавность регулирования скорости – это отношение двух соседних значений скорости:
= i/i-1, где i , i-1 – соответственно скорость на i и i –1-й ступенях регулирования. Она определяется коэффициентом регулирования, который выбирают как коэффициент геометрического ряда скоростей: = Z-1 D, где z – число фиксированных значений скоростей, z-1 – число интервалов между значениями скорости.
8. Критерии устойчивости САУ. Краткая характеристика. Области применения. (=20=25)
Алгебраические критерии основываются на утверждении, что если все корни характеристического уравнения левые (вещественные части всех корней отрицательны), то все коэффициенты уравнения имеют один знак, т.е. все значения an либо больше нуля, либо меньше нуля одновременно. Это является необходимым условием. АК применяются там, где необходимо просто установить - устойчива САУ или нет, без определения порядка устойчивости. Применяется при составлении алгоритмов программ.
Критерий
Гурвица. Для того, чтобы динамическая
система была устойчива, необходимо и
достаточно, чтобы
все
диагональных миноров определителя Гурвица
были положительны.
Критерий
Рауса. Для устойчивости линейной
стационарной системы необходимо и
достаточно, чтобы коэффициенты первого
столбца таблицы Рауса
были
одного знака. Если это не выполняется,
то система неустойчива.
Частотные
критерии устойчивости основаны на
связи расположения корней характеристического
полинома с годографом этого полинома
на комплексной плоскости, т.е. с графиком
комплексной функции D(jw) при изменении
w от 0 до ∞. По принципу аргумента Коши:
контур
,
охватывающий на
-плоскости
некоторое число неаналитических точек,
может быть отображён на другую комплексную
плоскость (плоскость
)
при помощи функции
таким
образом, что получившийся контур
будет
охватывать центр
-плоскости
раз,
причём
,
где
—
число нулей, а
—
число полюсов функции
Критерии используется для определения
степени устойчивости, а также путей
приведения САУ к устойчивому состоянию
ввиду своей наглядности, а также
отсутствию необходимости вычисления
полюсов передаточной функции замкнутой
системы.
Критерий Михайлова. Система будет устойчива, если вектор D(jw) при изменении частоты от 0 до +∞ повернется на угол np/2. При этом конец вектора опишет кривую, называемую годографом Михайлова. Годограф начинается на положительной полуоси при D(0) = an, и, при изменении частоты от 0 до ∞, последовательно проходит против часовой стрелки n квадрантов комплексной плоскости, с уходом в бесконечность в n-ом квадранте. Если это правило нарушается, то такая система неустойчива.
Критерий Найквиста. Этот критерий основан на связи свойства устойчивости замкнутой системы с формой АФЧХ разомкнутой устойчивой системы. Разомкнутой системой являются все последовательно соединенные блоки от входа системы до точки замыкания обратной связи. Линейная динамическая система, устойчивая в разомкнутом состоянии, устойчива и в замкнутом состоянии, если при изменении частоты от 0 до +∞ разность между числом положительных переходов годографа АФЧХ разомкнутой системы через вещественную ось и числом отрицательных переходов равна нулю.
9. = 2 Классификация промышленных роботов.
Промышленный робот — устройство, состоящее из механического манипулятора и системы управления , которое применяется для перемещения объектов в пространстве и для выполнения различных производственных процессов.
По способу управления: – роботы с программным управлением, работающие по заранее заданной жесткой программе; – роботы с адаптивным управлением, которые имеют средства очувствления и поэтому могут работать в заранее не регламентированных и меняющихся условиях, например, брать произвольно расположенные предметы, обходить препятствия и т. д.; – роботы с интеллектуальным управлением, которые наряду с очувствлением имеют систему обработки внешней информации, обеспечивающую им возможность интеллектуального поведения, подобного поведению человека в аналогичных ситуациях.
По назначению: - для обслуживания процессов литейного производства; - для обслуживания процессов сборочного производства; - для обслуживания процессов механической обработки; - для автоматизации штамповочного производства; - для обслуживания процессов сварочных работ.
По степени специализации: – универсальные роботы предназначены для выполнения разных операций и в том числе для работы совместно с разными видами оборудования; –специализированные роботы имеют более узкое назначение и осуществляют одну определенную операцию (например, сварку, окраску, обслуживание оборудования определенного вида); – специальные роботы выполняют только одну конкретную операцию (например, обслуживают конкретную модель технологического оборудования);
По характеру выполняемых операций: – производственные (технологические), которые выполняют основные операции технологического процесса и непосредственно в нем учувствуют в качестве производящих или обрабатывающих машин (сварочные, сборочные и т.д.); – подъемно-транспортные (вспомогательные), которые применяются для обслуживания основного технологического оборудования для выполнения вспомогательных операций, а также на транспортно-складских операциях; – универсальные – выполняют разнородные основные и вспомогательные операции.
По типу привода: – электрический; – гидравлический; – пневматический; – и пневмо-гидравлический. Часто их применяют в комбинации, например, в звеньях манипулятора большой грузоподъемности используют гидравлический привод, а в его захватном устройстве — более простой и маломощный пневматический.
По грузоподъемности Промышленные Роботы делятся на: – сверхлегкие – до 1 кг; – легкие – до 10 кг; – средние – до 100 кг; – тяжелые –до 1000 кг; – и сверхтяжелые – свыше 1000 кг.
Грузоподъемность робота обусловливается грузоподъемностью его манипуляторов, а при наличии нескольких манипуляторах — грузоподъемностью наиболее мощного из них.
По количеству манипуляторов: – однорукие; – двурукие; – трехрукие; – четырехрукие.
Классификация роботов по быстродействию: – малое – при линейных скоростях по отдельным степеням подвижности до 0,5 м/с; – среднее — при линейных скоростях свыше 0,5 до 1 м/с; – высокое — при линейных скоростях свыше 1 м/с.
Точность роботов: – малая — при линейной погрешности от 1 мм и выше; – средняя — при линейной погрешности от 0,1 до 1 мм; – высокая — при линейной погрешности менее 0,1 мм.
По числу степеней подвижности. Число степеней подвижности – это сумма возможных координатных перемещений объекта манипулирования относительно опорной системы.
По способу размещения промышленные роботы бывают стационарные и подвижные (передвижные) и подразделяются на напольные, подвесные (перемещаются по поднятому рельсовому пути) и встраиваемыми в другое оборудование (например, в обслуживаемый станок) и т. д.
10. Горячее, теплое и холодное резервирование. Общее и дробное. (383 АЭП) = 75
Резервирование является способом повышения надежности путем включения резерва(избыточных элементов) предусмотренного при разработке аппаратуры или в процессе ее эксплуатации.
Различают два основных вида резервирования: общее и раздельное. Общее резервирование состоит в резервировании системы в целом, а при раздельном резервировании система резервируется по отдельным участкам, блокам или элементам.
По способу включения избыточных элементов резервирование различают на постоянное и замещением.
При постоянном резервировании избыточные элементы присоединены к основным в течении всего времени работы и находятся в одинаковых с ними условиях. Постоянное резервирование позволяет получить системы с самым высоким коэффициентом готовности.
При резервировании замещением резервирующие элементы включаются взамен дублирующих только после их отказа. Резервирование замещением может быть с холодным, теплым или горячим резервом. Его недостатком является зависимость от надежности переключающих устройств.
- нагруженный (горячий) резерв - резервный элемент, который находится в таком же режиме, как и основой. Недостатком горячего резерва является уменьшение ресурса с течением времени. В системах автоматизации с горячим резервом переход на резерв может занимать время от нескольких миллисекунд до единиц секунд;
- облегченный (теплый) резерв – резервный элемент, находящийся в менее нагруженном состоянии, чем основной. Например, резервный компьютер в "спящем" режиме является облегченным резервом;
- ненагруженный (холодный) резерв - резервный элемент, находящийся в ненагруженном режиме до начала его использования вместо основного элемента. Ненагруженный резерв позволяет получить системы с самой высокой надежностью, но с низким коэффициентов готовности. Они эффективны в случае, когда система некритична к времени простоя величиной в несколько минут.
Основное отличие между "горячим", "холодным" и "теплым" резервом состоит в длительности периода переключения на резерв. При горячем резервировании контроллеров время переключения составляет от единиц миллисекунд до долей секунды, при теплом - секунды, холодном - минуты. Поэтому время переключения на резерв иногда рассматривают как основной признак при классификации резервирования замещением.