
- •П.Б. Разговоров методы анализа качества пищевого сырья и продукции
- •Оглавление
- •Введение
- •1. Классы и группы веществ, входящих в состав пищи
- •1.1. Применение основных групп физико-химических методов анализа продуктов питания
- •2. Спектроскопические и спектрофотометрические методы анализа
- •Взаимосвязь между видом возбуждения, длиной волны и энергией для некоторых спектроскопических методов
- •2.1. Закон Бугера–Бэра для количественного анализа продуктов питания
- •2.2. Применение закона Бугера–Бера для анализа растительных масел
- •Определение прозрачности масла
- •Определение степени прозрачности масла (гост 5472 - 50)
- •Визуальный метод определения цветности растительных масел (гост 5477 – 93)
- •Фотоколориметрическое определение цветности масел
- •Колориметрический метод определения массовой доли фосфоросодержащих веществ маслах и жирах (гост 7824 – 80)
- •2.3. Теоретические основы инфракрасной спектроскопии. Использование метода для анализа пищевых продуктов
- •Основные полосы поглощения говяжьего, свиного и костного жиров в ик спектрах
- •2.4. Анализ содержания жиров, степени их окисленности и количества транс-изомеров в жирах и жирных кислотах
- •2.5. Атомно-абсорбционная спектроскопия
- •2.5.1. Атомно-абсорбционный метод определения тяжелых металлов и токсичных элементов в пищевых продуктах и пищевом сырье
- •2.5.2. Способы минерализации органических проб
- •Сравнение результатов уз-обработки образца (1) и «сухой» (2) минерализации его в муфельной печи
- •2.6. Спектроскопия ядерного магнитного резонанса
- •Значения химических сдвигов для различных групп пищевых продуктов
- •2.6.1. Компонентный анализ жиров и влаги в пищевых продуктах методом ямр
- •3. Определение влажности пищевых продуктов
- •3.1. Спектральный метод анализа влаги в пищевых продуктах
- •Колебания молекулы воды в инфракрасном спектре
- •Определение влажности муки
- •Определение влажности эмульсии теста
- •Определение влажности кондитерского теста
- •Определение влажности кондитерского крема по ик спектрам
- •Определение влажности продуктов овощесушильной и консервной промышленности
- •Влажность некоторых продуктов воды в инфракрасном спектре
- •3.2. Гравиметрический метод определения содержания влаги
- •3.3. Метод определения влаги титрованием по Фишеру
- •3.4. Метод определения воды в жирах и маслах (метод Дина–Старка)
- •4. Хроматографические методы анализа
- •Классификация хроматографических методов по агрегатному состоянию фаз
- •4.1. Газо-жидкостная хроматография
- •4.1.1. Использование гжх для изучения состава жирных кислот природных масел, жиров и липидов
- •Время, мин
- •4.1.2. Использование гжх для анализа жирорастворимых витаминов в составе масел (жиров)
- •4.2. Тонкослойная хроматография
- •4.2.1. Использование метода тонкослойной хроматографии для разделения углеводов
- •4.2.2. Анализ пестицидов и ядохимикатов в растительном сырье
- •4.2.3. Анализ микотоксинов т-2, ф-2 и охратоксина а в фуражном зерне, продуктах его переработки и всех видах комбикормов
- •4.3. Ионообменная хроматография
- •4.3.1. Определение аминокислот в пищевых продуктах
- •Время, мин
- •4.4. Гель-хроматография
- •5. Масс-спектрометрический метод
- •5.1. Сочетание масс-спектрометрии и хроматографии для определения аминокислотного состава белка
- •1 2 3 4 5 6 Время, мин
- •6. Полярографический метод
- •6.1. Анализ токсичных элементов в пробе пищевого продукта
- •7. Реологические методы анализа
- •7.1. Типы приборов и оборудования для изучения реологических свойств пищевых продуктов
- •8. Сводная таблица методов контроля качества пищевых продуктов
- •Классификация методов контроля состава и свойств продуктов питания
- •Литература
2.5.2. Способы минерализации органических проб
Методы «сухой» и «мокрой» минерализации органических проб получили в последние годы широкое распространение. Особенно часто используется «сухой» способ, заключающийся в прокаливании пробы в электрических печах – муфелях при температуре t = 400–500ºС.
Достоинства «сухой» минерализации:
– доступность и простота исполнения;
Недостатки:
– потери элементов в результате термообработки;
– длительность процесса.
Метод «мокрой» минерализации позволяет свести к минимуму потери микроэлементов, однако при этом возможно увеличение загрязнения образца при применении большого числа органических реагентов.
Указанные недостатки полностью отсутствуют в ускоренном методе разло-жения образца с помощью УЗ-колебаний (время подготовки образца 15–20 мин).
Суть метода заключается в следующем. Навеску образца смачивают небольшими количествами концентрированных кислот – HNO3, H2SO4, HClO4 (до 5 мл), добавляют определенное количество дистиллированной воды (≈20 мл), подвергают пробу УЗ-воздействию в течение 2 мин и фильтруют. Затем вытяжку анализируют на содержание микроэлементов методом атомно-абсорб-ционной спектроскопии.
Таблица 2.3
Сравнение результатов уз-обработки образца (1) и «сухой» (2) минерализации его в муфельной печи
Элемент |
Содержание элемента в образце |
Найденное содержание микроэлементов, мг/кг |
|
УЗ – обработка (1) |
«Сухая» минерализация (2) |
||
Сu |
6,4 |
6,4 |
5,6 |
Zn |
15,8 |
15,8 |
14,0 |
Fe |
124,0 |
124,0 |
120,0 |
Co |
2,0 |
2,0 |
1,2 |
Fe
Zn
Рис. 2.14. Зависимость полноты извлечения некоторых микроэлементов от времени экспозиции
При сравнении результатов УЗ-обработки образца комбикорма для домаш-них животных (1) и минерализации «сухим» способом (2) (табл. 2.3) выявлено, что в ходе УЗ-обработки потери микроэлементов практически не наблюдаются.
Полнота извлечения микроэлементов из образца изменялась во времени УЗ-обработки по кривой с максимумом.
Оптимальная продолжительность обработки проб ультразвуком (τопт), как видно из рис. 2.14, составляет 2 мин. Это вызвано следующими причинами:
τ увеличивается → давление p внешнее возрастает → кавитационные пустоты уменьшаются → химические процессы замедляются.
Некоторые исследователи (Эльпинер, Колесникова) объясняют феномен действия ультразвука на образцы пищевых продуктов тем, что в результате разрыва химической связи под действием кавитации в воде образуются свободные радикалы OHº и Hº, обладающие большой реакционной способ-ностью и сильным окисляющим действием.
Таким образом, процесс инициируется действием кислот и завершается окисляющим действием ультразвука. [4].